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ABSTRACT

A plane—stres§ analysis is presented for an edge-stiffened
isdtropic or orthotropic elastic rectangular plate subjected to
prescribed loads.and prescribed témperature_distribufions.

Aloﬁg one or more of the edges the stiffeners are assumed to
rigidly maintain a prescribed shape (e.g., straight), while the
stiffeners along the remaining edges are assumed to have
negligible flexural stiffness. All four stiffeners are assumed
to be uniform and to possess finite axial stiffness. The plate
edges are assumed to be integrally attached to the stiffeners
along the originally sfraight‘centroidal axes of the stiffeners.
This work represents a generalization of earlier studies in
vhich only boundary loadings (rather than boundary displacements)
were prescribed.

The analysis is by means of Fourier series. Numerical
results are presented for the specific cases of an isotropic
square stiffened plate with one edge, two opposité edges, or all
four edges held straight. Iﬁ all three of these cases the plate
was assumed to have a pillow-shaped temperature distribution.

In the second case stretching forces parallel to the non-straight

edges were also considered.
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INTRODUCTION

In reference .l a plane-stress analysis, by means of Fourier series,
was presented for an elastic rectangular plate with four edge stiffeners,
subjected to any equilibrium system of boundary loads and any"prescribed
temperature distribution. The plate was assumed to be isotropic or ortho-
tropic, with elastic constants independent of position, and, if ortho-
tropic, with axes of elastic symmetry parallel to its edges. The
stiffeners were assumed to have finite extensional stiffness but negligible
bending stiffness, and the attachment between plate edge and adjoining
stiffener was assumed to be along the originally straight centroidal axis
of the stiffener. The stiffeners were assumed to be either uniform in
cross section or tapered in such a way as to result in any prescribed
variation of stiffener cross—sectional stress along the length of stif-
feners. This structure is shown schematically in figure 1.

In this earlier work, just described, the boundary conditions
were entirely those of prescribed normal and shearing loadings along the
outer periphery of the stiffeners. The purpose of the present paper is
to generalize this previous work by assuming that along one or more edges
the boundary condition of prescribed normal loading is replaced by one
of prescribed normal displacement - i.e. along one or more of the edges
the stiffener is assumed to be rigidly held in a prescribed shape. We
can imagine that such a stiffener has been endowed with infinite flexural

stiffness after being bent to its prescribed shape, while its axial



stiffneaé remains fiﬁite. Albhg such an edge, one may still prescribe a
diatribdtion of»e#ternal normal forces along the stiffener, but only the
resultantfdrceifand.moment M of this distribution are significant, since
the stiffener shape has been assumed to be rigidly fixed. On the remain-
ing edges the boundary conditions continue to be those of prescribed normal
and shear loading applied to perfectly flexible stiffeners. Only the case of
constant - area stiffeners is considered.

By this generalization the range of applicability of the analysis is
widened to include cases in which, for example, certain edges of the plate
are forced to remain straight. As an illustration, one can cite an interior
bay of an airplane shear web, bounded by spar caps along two opposite edges
(the top and bottom) and upright along the other two edges. Continuity of
the plate across the uprights suggests that when the adjacent bays are
identical to the one under consideration and similarly heated or loaded
the plate edges along the uprights will tend to remain straight. Thus
such a bay would correspond to an edge-stiffened rectangular plate with
two opposite edges kept straight. Similarly, an interior skin panel of a
multi~-spar multi-rib wing cohld correspond to the case -of all four edges
held straight.

The most general results of the present analysis are in the form of
equations for stresses in the case of shape, resultant external normal
force, and resultant external moment prescribed along (a) one edge,

(b) two opposite edges, and (c) all four edges. The use of these equa-

tions is described in detail. In addition, numerical examples are given
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corresponding to each of these cases. These numerical examples are for
doubly symmetric square plates with one edge, two opposite edges, or all
four edges held straight, and, for the most part, a prescribed "pillow-
shaped" temperature distribution, i.e. a tempefature_distribution in which
the stiffener temperatures are constant at one value and the plate experi-
ences a temperature rise, relating to the stiffeners, which varies as a
half sine wave in both directlions across the plate. For the case of two
opposite edges held straight on overall tension loading is also considered
which stretches the plate in the direction of the unconstrained edges,
while the constrained edges remain straight and parallel to each other

but move apart.

For the sake of simplicity, the term "temperature distribution" has
been and will often again be used in this paper. It should be understood,
however, that what is meant is a distribution of temperature rise with
respect to some datum temperature distribution at which the structure is
assumed to be stress-free in the absence of applied loads. Usually, the
datum temperature distribution is a uniform one, and then it becomes cor-
rect to speak of thermal stresses due to a temperature distribution rather

than to a temperature-rise distribution.

The structure, loading, boundary conditions, and results are described

in more detail in the following sections. The symbols are defined where

they are first used, and the definitions are also compiled in appendix A for

convenience of reference. Those details of the analysis not essential for

the understanding and use of the results are given in appendixes B through E.



DETAILED DESCRIPTION OF STRUCTURE

Geometry and Coordinate System

The combination of the plate and edge stiffeners is as shown
schematically in figure 1. The plate has a length a and a width b.
The position of any point in the plate is given by its coordinates x
and y In a Cartesian coordinate system whose origin is at a corner

of the plate and whose axes coincide with two adjacent edges, as shown

1
e

t

n ha f4
L ¢il€é i

2 A3 and A4 for the stiffeners located at x =0, x =a, y=0

and y = b, respectively. In the analysis the stiffener axes are assumed

by A., A

to coincide with the plate edges, but in figure 1 the stiffener axes are

shown slightly offset from the plate edges for clarity.
Thermal Strains

We assume that a datum temperature distribution exists for which
the unloaded structure is free of internal stress. When the structure
is in this datum condition the strains will be considered zero. For any
other temperature distribution, those strains that would be produced if
the thermal expansions of every infinitesimal element were permitted to
occur without restraint from neighboring elements will be called the
"thermal strains.'" The temperature distribution and coefficients of
expansion are assumed to be known throughout the stiffeners and plate,

hence the thermal strains are assumed to be everywhere known.



The notation for thermal strains is indicated in figure 2 and is
as follows: el(y), ez(y), e3(x) and e4(x).are the thermal strains in
the stiffeners located at x = 0, x = a, y = 0 and y = b, respectively;
ex(x,y) and ey(x,y) are the thermal strains in the plate in x and y
directions, respectively. The strains are positive for elongatiom.
Because the analysis allows for an orthotropic plate, e, and ey need
not equal, but since the x and y axes are parallel to the directions of

elastic symmetry, there 18 no thermal shear strain e v

Stress-Strain Relationships and Elastic Constants

The notation for the internal forces is indicated in figure 3.
Pl(y), Pz(y), P3(x), P4(x) denote the cross-sectional tensions and
el(y), ez(y), 83(x), 24(x) the total strains (thermal plus elastic)
in the stiffeners located at x = 0, x = a, y = 0, y = b, respectively.
The plate stress resultants (force per unit length) are represented by
Nx(x,yD and Ny(x,y) for normal stress and ny(x,y) for shear stress,
as shown in figure 3. The corresponding total strains are symbolized
by ex(x,y), ey(x,y) and ny(x,y).

In terms of this notation, the assumed stress-strain relations
for the stiffeners are

Py

AiEi

ei = ei + (i = 1,2,3,4) (1)

with Young's moduli E. and E2 independent of y, E, and E4 independent

1 3

of x. The stress—-strain relations of the plate are taken as:



e =e_ +CN_-CN
X X . y

1'x 3
e =e¢ +CN -.C,N 2)
y y 2y 3'x
ny = C4ny

where the -elastic constants Cl’ CZ’ C3 and C4 are -independent of x and y.
If the plate is homogeneous and isotropic, with thickness h, Young's

modulus E, and Poisson's ratio v then

_ -1
¢, = C, = (Eh)
Cy e (3)
-1
C4 = 2(1+v) (Eh)

The assumption that the elastic constants are independent of spatial
coordinates also implies the assumption that they are independent of

temperature.

Boundary Conditions

Figure 1 shows the boundary conditions purely of prescribed
loading which were employed in reference 1. This loading consists of
end forces Pl(O), Pl(b) etc. applied to the centroids of the end cross
sections of the stiffeners, and distributed external shear flows

ql(y), qz(y), q3(x), q4(x) and distributed external normal forces



Nl(y), N2(§), N3(x), N4(x) applied to the stiffeners. The distributed
loadings have the dimensions of force per unit length. The shear flows
are assumed to be acting along the centroidal. axes of the stiffeners,
although for clarity they are showﬁ displaced from these axes in

figure 1. Because the edge.stiffeners have zero bending stiffness, the,
normal force is transmitted directly through them into the edge of the
plate.

In the present paper the boundary condition of ‘prescecribed ﬁormal—
force distribution is replaced by that of prescribed and rigidly main-
tained stiffener shape and prescribed external normal-force resultants
along one edge, the opposite edges, or all four edges. (Along the re-
maining edges two stiffeners are still assumed to .be perfectly flexible.)
These cases are shown schematically in figure 4, in which the cross-~hatched
stiffeners are those whose shapes are rigidly prescribed. T1 through T4
are the prescribed external normal force resultants, and Ml through M4
the prescribed external moment resultants, acting on these stiffeners.
Letting u(x;y) and v(x,y) denote the displacement components in the x and
y directions, respectively, we can describe the boundary condition of

prescribed shape mathematically as follows for case (a) of figure 4:

2
C%;%) is a prescribed function of y.

x=0

Similarly, the shape boundary conditions for case (b) are:

92u 32u
G and (T3 are prescribed functions of y.
y x=0 3y X=a

And those for case (c) are:



2
and (%;%9 are prescribed functions of y
x=a

32v 32v
qspﬂ and Q;;ﬂ are prescribed functions of x.

y=0 y=b

Note that the prescribed shape of an edge is described by means of its
curvatures. If an edge is held straight the prescribed curvatures are
zero.

The boundary condition of prescribed shape along an edge can be
achieved, hypothetically, by forcibly bending the edge stiffener (in
its attached condition) to the prescribed curvatures, and then endowing
it with infinite flexural stiffness while its axial stiffness remains
finite. If the now flexurally-rigid stiffenmer is free of all external
forces, the values of T and M shown in figure 4 for that stiffener became
zero; the system of -internal normal forces acting between that stiffener
and rest of the structure will then constitute a self-equilibrating
system, and a mathematical statement to that effect must be included in
the analysis as a boundary condition. On the other hand, if the stiffener
is not completely free of external force then the internal normal forces
along the edge of the stiffener plus the external T and M applied to
that stiffener must together be self-equilibrating.

Of course, the total system of external forces must at the outset

constitute an equilibrium system.
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Corner Conditions

The stiffeners will be assumed to be hinged where they meet at
the corners. This assumption 18 really superfluous in the case.of figure
4a or 4b, for in these cases one of the two stiffeners meeting at every
corner 1s a perfectly flexible one, incapable of developing any bending
moment., The assumption is.significant only in the case of 4c, where
at each corner two rigid stiffeners meet.

If the loading and temperature distribution for the case of
figure 4c are such that there is no tendency for the stiffeners to undergo
relative rotation at the corners (as was true in the numerical examples
considered in this paper), then, of course, the plate stresses and stif-

fener tensions are the same for rigid joints as for hinged joints.



FOURIER SERIES EXPANSIONS FOR PRESCRIBED BOUNDARY LOADS,
PRESCRIBED BOUNDARY CURVATURES, AND PRESCRIBED

THERMAL STRAINS

The results of the present analysis, to be discussed shortly, con-*
sist of formulas for the stiffener and plate stresses in terms of the given
loading, the given boundary curvatures, and the known thermal strains. How-
ever, these prescribed quantities do not appear explicitly in these formulas;
it is rather the Fourier coefficienhts.of these quantities which are required.
In anticipation of this requirement it is assumed that the given quantities
can be expanded as Fourtier series, with known coefficients, in the forms given

below.

Prescribed Boundary Loadings
When the prescribed normal-force distributions Nl(y), Nz(y), N3(x),
N4(x) exist, that is when their existence is not pre-empted by boundary con-
ditions of prescribed shape, then they will be assumed known in the form of

the following series:

N
- ' any
Nl(y) Z Bn sin b (0 <y < D)
n=1
N nny
= 1"
Nz(y) Z Bn sin b (0 <y <Db) (4)
n=1
M m7uX
_ an mnx
N3(x) = Z Bm sin . (0 < x < a)
m=l
N,(x) = % B""" gin RIX (0 < x < a)
AL Lym a

10
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where
b , _
2 nn
Br'l - t I Ni(y) sin _l.al dy, etc. | (5)
0
And the shear flows.will be agssumed to be given in the following form:

N
9 @) = nZO Q, cos n_:z'

N
q,(y) = ) Q) cos any

n=0 b
u )
4,09 = § Q" cos HI
3 m=0 m a
% mx
q (x) = moog BIX
4 =0 Qm a
where
28 " any
Q; =3 ql(y) cos = dy} etc. N

0

and 6n° is Kronecker's delta.
When any of the loadings Nl(y), Nz(y), N3(x), or N4(x) exists, it
is transmitted,through the assumedly perfectly flexible stiffener,into the

plate. Thus the corresponding Fourier coefficients B', B", B''', or B""
' n’ n’® “m m

describe not only the externally applied normal loading but also the internal

distributed tension Nx(O,y), Nx(a,y), Ny(x,O), or Ny(x,b), respectively,

acting mutually between the stiffener and the edge of the plate.

11



Finite upper limits M and N are shown for the summation indexes in

these (and subsequent) series iﬁ expectation of the fact that, for practi-

cal computational reasons, it will normally be necessary to use truncated

rather than infinite series.

Prescribed Boundary Curvatures

When curvatures are prescribed, they will be assumed to be given

by one or more of the following series, depending on which edges have the

prescribed curvatures:

32u
q;;0x=a

where b 5
v 2 2 3cu
Kn b (Byz)

0

If an edge is held straight, then all the coefficients in the Fourier

I}

N

Z K' sin ZX
n b

n=1

N
z K" sin 3%
n b
n=1

M mnrx
] K" osin BIX
m a

m=1
M

. mux
z K;" sin ==
m=1

x=0

sin 'n—gl dy ,

(0

(0

(0

A
]

A
"

< b)

< b)

A

a)

(8)

(9)

(10)

(11)

(12)

series expansion for the curvatures along that edge will, of course, be

Zero.

12
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Prescribed Thermal Strains

If théfe are any discontinuities in thermal strain between the
stiffeners and the edges of the plate, these will be represented by the

following Fourier series with known coefficients:

N
= nn
e)(y) -~ e (0,y) = nzl ! sin B (0 <y < b)
x nn
e,(y) - ey(a,y) = nzl T; sin —EX (0 <y < b)
(13)
M
e,(x) - e (x,0) = Z T"' gin BIX (0 <« x < a)
3 X me] ™ a
i mnx
- = Y oo
e4(x) ex(x,b) N " sin = (0 < x < a)
where b
2 ! . nn
' & _ P . Y
T, = b J [el(y) ey.o,y)] sin =5, etc. (14)
0

The quantity a2ey/ax2 + Bzexfay2 is assumed known throughout the
plate and representable by the foliowing Fourier series in the open

region 0 < x < a, 0 <y < b:

3%e azex % § mnx nny
3;71'+ 3;7— = m;l n;l Tmn sin == sin ~¢ (15)
where b a
4 [ 1 82ev azex mrx nny
Tmn -3 | J [axg + 3y2 ] sin S sin =% dxdy (16)
0 O
13
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Integration by parts in the above equation gives the following
alternate form which permits Tmn to be evaluated from the first partial

derivatives of e, and ey instead of the second partial derivatives:

a
de
__mn 4 y mrx nny
Tmn o ab J f 5% S ~a sin N dxdy
0 0
a b
_ar i f—’i cos 2 gin B 4o4x (17)
b ab dy b a &
0 0 '

Equation (17) may be used for piecewise continuous ey or e with finite
discontinuities provided that aeylax and aex/ay are regarded to be infi-
nite in the manner of the Dirac delta function at points of discontinuity.
If e and e are continuous in the closed region 0 < x < a, 0 <y < b,

further integration by parts gives

b .
T - _Doré _ ;o Dny
m " ab[ [ey(a,y) cos mrn ey(o,y)] sin b dy
0
b a
mr.2 4 . mmxX . nny
(a) ab[ f ey(x,y) sin 5 sin = dxdy
0 0
a
nm 4 - mrx
-3 abj [ex(x,b) cos nm ex(x,o)] sin - dx
0
a b
- (z—nf %,5 J J ex(x,y) sin p_gz sin l:‘z dydx (18)
0 O

Finally, the known quantities (Beylax)x 0° etc. are assumed to be

expandable in the following Fourier series:

14



oe N a
L) = ' nry
G x=0 nzl V! sin =
oe N am
e = 1] OTY
(ax )x=a nZl vn sin b
aex M mrx
o = . e mrx
(ay )y=0 m£1 Ve sin =
aex ¥ mmTx
————— -— 1
(ay )y=b mzl Vo' sin =2
where
b
V! =2 éfi% in BLY
b ax ‘x=0 50 Tp
0

15

dy ,

(o

(0

(0

(0

etc.

(19)

(20)

(21)

(22)

(23)



GENERAL RESULTS

The analyses are carried out in appendixes B through E. The results
are of two kinds: (a) general results valid for any set of geometric,
material and loading parameters, and (b) numerical results for specific
cases. The former \are presented in this section, the latter in the next
section.

The general results of analyses are in the form of Fouriler series
for computing the plate stresses and stiffener tensions. In the subsec-
tions below the pertinent Fourier series for each of the various stresses
will be pointed out. In the final subsection (Evaluation of Series
Coefficients) the procedures for evaluating the Fourier coefficients in
these series will be summarized. Enough detail will be given to enable
the reader to make calculations based on the general results without

having to study the derivations in the appendixes B through E.

Series for the Interior Plate Stresses and Interior Stiffemer Tensions

The stress resultants Nx’ Ny and ny at interior points of the
plate are given by the double Fourier series in equations (B19), (B22)
and (B25). The stiffener tensions Pl(y), etc., are given by the single
Fourier series in equations (B16) for all but the end sections of the

stiffeners.

Series for Stresses along the Plate Edges

The shear stress resultant ny for points along the plate edges can

be obtained from the same Fourier series, namely equation (B25), as for
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interior points. However the normal stresses along the plate edges
require special single Fourier series, which will now be given. Equa-
tions. (B20) and (B21) can be used for evaluating N_ along the edges
y = 0 and y = b; equations (B23) and (B24) similarly give Ny along. the
edges x = 0 and x = a. The stresses Nx along the edges x = 0 and x = a
are given by the series for Nl(y) and Nz(y), respectively, in equations (4);
and similarly Ny along the edges vy = 0 énd y = b are given by N3(x) and
N4(x) series, respectively, in equations (4).

The serles which are referred to above for the normal stresases
Nx and Ny along the plate edges are valid at all points except the
corners. Special formulas to be used for the corner values of Nx and

Ny will be given subsequently.

Series for the End Tensions of the Stiffeners

Where two perfectly flexible stiffeners meet, as at the point
(a,0) of figure 4a, the tension at the end of each is merely equal to
the externally applied load, such as P3(a) or P2(O). Where a perfectly
rigid and perfectly flexible stiffener meet, as at the point (0,b) of
figure 4a, the tension at the end of the rigid stiffemer is again equal
to the applied load, such as Pl(b); but the tension at the end of the
flexible stiffener, which is provided by the rigid stiffener, is an
unknown rather than a prescribed quantity. Similarly, where two rigid
gtiffeners meet, as at the corner (a,b) of figure 4c, each stiffener pro-
vides an unknown. tension to the end of the other stiffener. The tension

which one stiffener exerts on the end cross—section of the adjacent stif-
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fener is experienced as a shear force on the end section of the first
stiffener. This mutual action between the stiffeners at the corner (a,b)
of figure 4c is illustrated in the sketch below, in which the stiffeners
are shown disjointed for the sake of clarity.

P, (b)

P, (b)

) Py (a)

= r Py (a)

The equations for computing the unknown end tensions are as follows:
i) Equations (Cl4) and (Cl5) for the case of figure 4a.
ii) Equations (D13) through (D16) for the case of figure 4b.

iii) Equations (E1l) through (E13) for the case of figure 4c.

Formulas for the Plate Normal Stresses at the Corners

None of the series for the plate stress resultants Nx and Ny thus
far presented are valid at the corners of the plate. However, once the
stiffener end tensions have been determined, these can be used to obtain
the corner values of Nx and N . The procedure is as follows for the corner

x =0, y =0: From equations (1) and (2) the stiffener strains at this

corner are
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e3(0) + P3(0)/A3E3

(Y]
It

m
Il

el(O) + Pl(O)/AlEl

while the plate strains are

(y
]

e, (0,0) + C;N_(0,0) - C3Ny(0,0)

€
y

e, (0,0) + C2Ny(0,0) - C4N, (0,0)

Equating the stiffener strains and the corresponding plate strains (by
virtue of the assumed continuity between stiffeners and plate) and
solving the resulting equations simultaneously for Nx(0,0) and Ny(0,0),

one obtains

C2[?3(0)—exﬁp,0)] + qs[el(pziEZ(O,O)] + C2P3(O)/A3E3 + C3P1(O)/A1E1

N_(0,0) = = e —
X C1C2 - C3
(24)
_ Cyleg(0)-e (0,00] + C4le;(0)-e,(0,0)] + C,P, (0)/A[E; + C,P,(0)/AE,
N (O’O) = 2
y €16, = €3

In a similar manner, one obtains the following formulas for calculating the

plate normal stresses at the corners (0,b), (a,0), and (a,b):

qz[éé‘Q?fExﬁq:p)] +A93[el(b)ffz(0,b)l_+ CZP4(0)/A4E4 + C3Pl(b)/AlEl

N_(0,b) = —— 7
X C1C2 - C3
(25)
. _ Cyle;(b)-e (0,b)1 + Cyle, (0)-e, (0,B)] + C;P; (B)/A\E) + C3P4(0)/A4E,
(Oab) = 2
y Clc2 - C3
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Cz[e3(a)-ex(a,0)] + cs[gZFO)ny(a,o)] + C2P3(a)/A3E3 + C3P2(0)/AZE2

N_(a,0) = 2
x c.c, - C
| 172 3 (26)
Cl[ez(O)—ev(a,O)] + C3[e3(a)-ex(a,0)] + Cle(O)/AZE2 + C3P3(a)/A3E3
Ny(2,0) = c.C, - C2
y 172 3
Cz[e4(a)-ex(a,b)] + C3[e2(b)—ev(a,b)] + C2P4(a)/A4E4 + C3P2(b)/A2E2
N, (a,b) = c.C, - C2
172 3
(27)
Cl[ez(b)—ev(a,b)] + C3Ie4(a)-ex(a,b)] + C1P2(b)/A2E2 + C3P4(a)/A4E4
Ny (20 = €,C, - C3

When the plate is isotropic and there is no discontinuity of thermal strains
between stiffeners and plate at the corners, then the above formulas are

reduced to

P_.(0) P.(0)
Eh 3 1
N _(0,0) =—= [ + v 1
X 1-v A3 E3 Al El
(28)
P. (0) P_(0)
_ _Eh 1 3
N (0,0) = 7507 [Al E v AJE, ]

with similar expressions for the other three corners.

Evaluation of Series Coefficients

In order to use the series referred to in the above sections for

numerical calculation of stresses, one must first evaluate the coefficients

J

c' . cll

T ”" \J . . .
2 Sne 8o 8 Bn etc. (if these coefficients are unknown), c

mn’® Smn’ Jmn’

m appearing in them. The procedure for evaluating these

s;, s;, s;', and s
coefficients will now be outlined in detail. It will be seen that the first

four groups of coefficlents, namely cé, c;, gé, g;, are the key to all the

others.
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i) The case of figure 4a. - The c;, cg, g;, and g; are defined by
the system of equations (C29) to (032) and can be determined by solving
these 2N + 2M equations simultaneously for the E;, E;, é;, g; and noting
the definitions in equations (B66). As an alternative, equations (C46)
may be solved simultaneously for the gé and g;; the E& and E; are then
obtained directly from equations (C44) and (C45). The alternative is
preferable because it requires the solution of only 2M simultaneous equa-
tions, regardless of how large a value is selected for N, With the c;,
c;, g;, and g; known, equations (C9) will give the values of B;.

If the structure,loading and thermal strains are symmetrical about
the centerline y = b/2, considerable simplification results. The c;, c;,
gé, and g; are then defined by equations (C50) through (C52). Only the M
equations (C51) need to be solved simultaneously. They give the gé, after
which the g;, cé, and c; are obtained directly from equations (C50) and
(C53). Equations (C54) and (C55) may then be used to determine the B;.
In this case the size of N again does not influence the number of equa-

tions that have to be solved simultaneously.

Once the c;, c;, g$, g; and B; known, equations (B34), (B35), and (B57)
through (B61) will furnish the remaining coefficients directly, for either

the symmetrical or unsymmetrical case.

ii) The case of figure 4b. - The c;, c;, g;, g; are defined by the

system of equations (D28) through (D31) and can be determined by solving these

2N + 2M equations simultaneously for the E;, E;, g&, and E;. As an alternative,

equations (D49) may be solved simultaneously for é& and é;; the E; and E; are
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then obtained direéﬁly from equations (D42) and (D43). .The alternative
requires the solution of only 2M simultaneous equations, regardless how large
a value is selected for N. With the c;, c;, g&, g; known, equations (D9) wil
furnish the values of B; and B;.

If the structure, loading and thermal strains are symmetrical about
both centerlines, considerable simplification results. The gé and g; are
then defined by equations (D52) and the simultaneous system of (M+1)/2
equations (D57). The latter may be solved simultaneously for the gé, after
which the E;, the E;, B;, B; are obtained directly from equations (D56),
(D53), and (D52). The size of N again does not influence the number of
equations that have to be solved simultaneously.

With the cé, c;, g&, g;, B;, and B; known, equations (B34), (B35), and

(B57) through (B61) will furnish the remaining coefficients directly, for

either the symmetrical or unsymmetrical case.

mney c
> "n

m

iii) The case of figure 4c. - The B;, B;, Bé? B , c;, g;, and
g; are defined by the system of equations (E23) through (E30) and can be
determined by solving these 4N + 4M equations simultaneously for Bé, B;,
B;', B;", E;, Eg, gé, E; and noting the definitions in equations (B66).

For the case of a square plate (b=a) with stfucture, loading and
thermal strains symmetrical about both centerlines (x = a/2 and y = b/2) and
diagonals, considerable simplification results. The B', B'", B'", B"", ¢', "

n’ n’> m m n’ n
géf and g; are then defined by equations (E31), (E32), and (E33), and the
M + 1 equations (E34) and (E35). Only equations (E34) and (E35) have to be

solved simultaneously.
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With these known, equations (B34), (B35), and (B57) through (B61)
will furnish the remaining coefficients directly, for either the symmetri-
cal or unsymmetrical case.

Limiting case of large stiffener area. — In the appendixes various

limiting cases are considered in which some or all of the stiffener cross-
sectional areas are allowed to approach infinity by comparison with the
plate cross-sectional area. The results of these limiting cases will now
be described. It will be seen that the calculation procedures for these
limiting cases are much simpler than for the general case. Except for two
of the limiting cases considered, it is no longer necessary to solve simul-
taneous equations in order to determine the Fourier coefficients in the series
expansions for the stresses.

(a) The case of figure 4a: For this case all four stiffener
cross-sectional areas were assumed to approach infinity simultaneously while

maintaining constant ratios with each other. The results are contained in

equations (C61l) to (C64), which give explicit expressions for c;, g;, g

and cﬁ, correct to terms of the first degree in 1/(a3EllAlE1). More accurate
results, correct to terms of the second degree in this quantity, are repre-
sented by equations (C66), (C67), (C68), and (C70).

(b) The case of figure 4b: For the configuration of figure 4b
attention was restricted to the case in which structure, loading, and thermal
strains are s&mmetrical about both centerlines (x = a/2, y = b/2), and five
different types of limiting case were considered. These five cases are

described below together with the results obtained form them.
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(1) A, ==A, >, A, = A -

3 4 1 2
and g; are defined explicitly by equations (D52), (D59), and (D60).

remaining finite. The quantities c;, (g g;,

(2) A3 = A4 + o, followed by A1 = A2 + o, The results for this iterated
limiting process are represented by equations (D52), (D62), and (D64)

(3) A, =A, > o, A . = A, remaining finite. Equations (D52), (D66), and

1 2 3 4
(D68) result. In this case a system of simultaneous equations (D66) has

to be solved.

(4) Al = A2 + «o, followed by A3 = A4 -+ «, Equations (D52), (D69),

and (D70) are the result of this limiting process.

(5) A1(= A2) and A3(= A4) approaching infinity simultaneously while the
ratio of Al to A3 remains constant. The results are given by equations
(D52), (D72) and (D73).

In the above-cited results, cé, c;, gé and g; are given correct to terms
of the first degree in 1/(a3EllAlEl). Conditions (2), (4), and (5),

which are physically identical, also turn out be mathematically identical,
as an examination of the cited equations will show.

(c) The case of figure 4c: Here attention was restricted to the
square case (b = a), with symmetry about both centerlines and diagonals,
and a particular loading consisting only of prescribed thermal strains.
The stiffener areas, all equal, were then allowed to approach infinity.
In view of the highly specialized assumptions no general results will be
cited for this case. The reader may refer to appendix E for a detailed

description of the procedure. 1In this limiting case it is also necessary

to solve simultaneous equations.
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NUMERICAL RESULTS

"~ The foregoihg analytical results were used to obtain numerical
stress data for twelve illustrative problems, ten of them thermal-stress
problems involv.ing non-uniform .temperature distribution without any
applied loads, and the other two prescribed-force problems corresponding
to T1 = T2 =T # 0 in figure 4b, with all other loads vanishing and
temperature uniform,.

In all twelve problems the plate was square (b = a) and isotropic,
with Young's modulus E, Poisson's ratio v, and thickness h. In each
problem the two x-wise stiffeners were assumed to be identical to each

other (i.e. A, = A4) and the y-wise stiffeners were similarly assumed

3

to be identical (i.e. Al = A2). Furthermore, in all but one of the

problems the x-wise stiffeners were taken to be identical to the
y-wise stiffeners; in presenting the results for those cases the symbol

A will designate the common value of A A, and A4, and the symbol

1° 890 A5

A the common value of the area-ratio parameters A, and A defined as

1 2?

follows: = 4ah/n2A1, Az = 4bh/w2A3. The stiffeners were also assumed

M
to have the same Young's modulus as the plate.

In the thermal stress problems, the stiffeners were considered to
be at a uniform temperature, while the plate was assumed to have a
pillow-shaped temperature rise, relative to the stiffeners, of the form
8 sin(wx/a) sin(wy/b); thus 6 denotes the temperature rise of the plate

center relative to the edges. The symbol a will denote the coefficient of

thermal expansion of the plate material,
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The table below summarizes the twelve problems for which calculations
were made. The first column indicates for each problem which of the cases
is being considered, that is, whether one edge, two edges, or all four
edges are held straight. The second column indicates the loading condi-
tion. In this column "PSTD" stands for the pillow-shaped temperature dis-
tribution described above and connotes a purely thermal-stress problem,
with no applied forces. The notation T1 = T2 = T which appears for two
of the problems associated with figure 4b denotes a pair of stretching loads
applied in the x-direction to a structure of uniform temperature. The third
column shows the value of Poisson's ratio used in the calculations; except
for one calculation Poisson's ratio was taken as 0.3. The fourth and fifth
columns give the values of the area-ratio parameters, defined as follows:
= 4bh/m2A

= 4ah/w2Al, A The value of zero for these parameters refers

M 2 3°
to the limiting case in which the stiffener cross-sectional area approaches
infinity by comparison with the plate cross—-sectional area. Column 6

gives the equations used to compute the basic unknowns leading to the
stresses, Column 7 tells in which figures of the present paper the

results can be found. The results are in the form of dimensionless plots
of plate stress and stiffener tension, represented by the solid curves of
figures 6 through 17. The dashed curves which appear on some of the

figures are selected results from reference 1 for the case in which all
four stiffeners are perfectly flexible, included for the sake of comparison.

Additional information of interest concerning the calculations is

appended in columns 8, 9, and 10. Columns 8 and 9 give the upper limits
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L=

(1) (2) 3) &) (5 (6) @ (@ 9 (10)

No. of IBM 7074
edges held : Equations computing
straight . | Loading | v Al A, employed Results| M N | time (min.)
— A e *
One (fig.4a) PSTD |.3 ] 2| 2 (C50)-~(C55) Fig, 6| 30 | 59 21
- " - 1 N -II_A_ n 1 1 " . 7 " 11 21
" " "10| 0 (C61)~(C64) 8] 79 79 3.5
) - 'll T T ” 0 0 0 - " - 9 " " 3. 5
* — o —— - —
Two (fig.4b) PSTD (.3 | 2 2 (D52), (D53), 10| 59 | 59 11
| (D56), (D57)
- —nt R A -n~—_h -n 1 El- 717 1 " . 11 ] " 11
| oo = = - . - SRS __L_. N - 1 - 1
" " " 1| 0 (D52), (D59), 12 " " 2.5
(D60)
el e ek ﬁn_._ﬁizf I — )
" " " o O (D52), (D62), 13| 79 79 2,5
(D64) .
[ | M — . i
" T1=T2=T "1 1] 1 (D52), (D53), 14 59 59 10
(D56), (D57)
_ e N ) .
" " "1 ol o (D52), (D62), 15 " " 2.5
(D64)
Four(fig. 4c) PSTD* " 1 1 L,(E34)’ (E35) 16[ " " 9
n " " 0 0 (E52)_(E56) 17 11 n 5.5

* PSTD stands for '"pillow-shaped temperature distribution”
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of the summation.indexes employed in the assumed Fourier series for stress
function and stiffener tensions; M pertains to the x-direction and N to
y-direction. Only the highest M and N values used for each problem are
shown. In general, calculations were also made for smaller M and N combi-
nations in order that the convergence of the calculations could be observed.
Column 10 shows the IBM 7074 computing time that was required to obtain,

for the given M and N, all the results plotted in the respective figure.

The stresses were computed at x/a and y/b intervals of 0.1. Because of
symmetry it was sufficient to make calculations for only one-half or

one-fourth of the structure.
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Discussion of Numerical Results for the Thermal-Stress Problems

Figures 6 through 13, 16 and 17 present the computed results for the
thermal stresses due to the pillow-shaped temperature distribution. The
primary effect of assuming some of the stiffeners to be held straight is
the creation of a running normal stress between these stiffeners and the
adjacent edge of the plate. These stresses, which would be zero if the
stiffeners were perfectly flexible, are depicted by Nx(O,y) in figures 6a,
7a, 8a, 9a, 10a, 1la, 12a, 13a, 16a, and 1l7a, and by Ny(x,O) in figures
16b and 17b. The maximum running normal stress between a rigid stiffener
and adjacent plate edge is seen to range from about 35% to about 807 of the
normal stresses produced in the middle of the plate.

An interesting discontinuity occurs in the mutual normal stress
between a plate edge and an adjacent perfectly flexible stiffener where
that stiffener meets a rigid stiffener, e.g. the stress Ny(x,O) at the
point x = 0 in figure 6b and the point x = 0 in figure 10b. This stress
is zero everywhere along the edge of the plate except at the corner where
the rigid and perfectly flexible stiffeners meet. At that point the plate
stress must jump to a value consistent with the strains at the edges of
the two meeting stiffeners. The strain at the end of the rigid stiffener
is zero, but the strain at the end of the flexible stiffener is not zero.
It is the latter strain, in conjunction with Poisson's ratio, that gives

rise to the non-zero plate stress right at the corner.
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Comparison of the dashed curves with the corresponding solid curves
shows that a further effect of holding one or more edges straight is to
increase at least one of the normal stresses at the plate center. In
figure 17a, for example, the normal stress ét the plate center is seen to
be increased almost 807 as a result rigidizing the stiffeners. In figure
7a and 7b, it is seen that the effect of keeping the left side straight
is to increase x-wise compressive stress and decrease the y-wise compres-

sive stress at the plate center due to a pillow-shaped temperature rise.

A similar result is shown in figures 1la and 11b when both the left and right

sides are forced to remain straight.

On the other hand, comparison of dashed and solid curves for Nx
shows that the maximum shear stress associated with the x and y directions
" is generally reduced by the existence of one or more straight edges. 1In
the case of all four edges held straight, the reduction is seen to be quite
drastic (figs. 16c and 17c). The corner shear stress, in particular, is
reduced to zero for this case, as one should expect. The non-zero corner
shear stresses in the other cases are a consequence of the zero bending
stiffness for at least one of the two stiffeners meeting at every corner.
Finite stiffener bending stiffness plus rigid joints at the corners would,
in an actual situation, tend to reduce the corner shear stresses virtually
to zero.

In the case of perfectly flexible stiffeners (ref. 1), the stif-
fener tensions approach zero at the ends of the stiffeners. In the present
case, however, a finite end tension is produced in a perfectly flexible
stiffenér where it meets a rigid stiffener, or in each of two rigid stif-

feners where they meet. This is shown in figures 6f, 7f, 8f, 9f, 10e, lle,
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12e, 13e, 16d and 17d. However, the maximum tension in a stiffener still
occurs away from the end.

As is to be expected, the ratio of stiffener cross—sectional area
to plate cross—-sectional area has a noticeable influence on the plate normal
stresses. Increasing this ratio (i.e., diminishing A) tends to increase the
plate normal stresses; this can be seen, for example, by comparing the central

value of Ny in figures 6b and 8b.

Discussion of Numerical Results for the Applied-Force Problems

In figures 14 and 15 are plotted the plate stresses and stiffener
tensions produced by the pulling apart of two opposite stiffeners of infinite
bending stiffness (fig. 4b with Tl = T2 = T and all other loads and tempera-
tures zero). From figure l4a and e or 15a and e it is seen that this loading
produces a nearly uniform tensile stress in the direction of the stretching
(note that the Nx scale in figure l4a does not start at zero). Deviations
from uniformity are most pronounced near the ends (x = 0). The plate stresses
in the direction transverse to the stretching are seen to be quite small
(figs. 14b and 15b) except near the ends, where the Poisson contraction of
the plate is partiélly suppressed (fig. 14b) or completely suppressed
(fig. 15b) by the end stiffener.

For the case A »0, the plate cross-sectional area becomes negligible
compafed to the stiffener cross—-sectional areas, and one should therefore
expect that the applied load T would be transmitted from one side to the

other entirely through x-wise stiffeners, causing P3(x)/T to be uniform at

the value 0.5, TFigure 15e shows that this predicted behavior was very nearly
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achieved by the calculations, which led to values of 0.5 at x = 0 and
.495 at x = 0.5a. The largest deviation from uniform stiffener tension
occurred at x = 0.la, where a value of .483 was obtained as a result of
what appears to be a Gibbs phenomenon. For the tension Pl(y) in the
other two stiffener (fig. 15d), the calculation led to zero, which is
value one should expect for this limiting case.

The behavior of ny in the neighborhood of the plate corner is
interesting. It seems to become infinite for all values of A as the
corner is approached (see figs. l4c and 15c). This singularity was not
proved mathematically but the evidence for its existence is almost
unmistakable from the computed values of ny(0,0) as the upper summation
limits M and N in the assumed series are increased. This is shown in figure
15f, where the computed dimensionless corner shear stress is plotted as
a function of M on semi-log paper for the case M = N. The linearity of
these graphs indicates rather convincingly that the corner shear stress
would be infinite for the presumably exact solution (M = N » =),

This behavior of the corner shear stress must be construed as a
consequence of the assumption of perfect flexibility for one of the two
stiffeners meeting at each corner. A similar behavior is obtained when all
four stiffeners are perfectly flexible, for the case of a step-like tempera-
ture discontinuity between stiffeners and plate or tensions applied to the
stiffener ends, as is noted in references 1, 2 and 3. In an actual situation,
finite flexural stiffness in the stiffeners which were here assumed to have

none would tend to eliminate the shear stress singularity at the plate corners.
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APPLICABILITY OF RESULTS

There are many plane thermal-stress ahalyses in the literature for
rectangular plates with free edges. In aircraft and spacecraft applica-
tions, however, the plate elements that one is concerned with are almost
always attached to stiffening members (e.g., spar caps, rib caps, or
shear-web uprights) along their edges. It was with such plate elements
in mind that the work in references 1, 2, and 3 was done. In these
references the stiffeners were assumed to have finite axial stiffmness but
negligible flexural stiffness and the boundary conditions were entirely
those of prescribed load. Thus, while references 1, 2 and 3 represent
a step toward more realistic detailed analysis of rectangular-plate
plane-stress problems, they are not directly applicable to problems in
which the boundary conditions are those of prescribed shape along one or
more of the edges. The most obvious examples of such prescribed-shape

boundary conditions arise when one considers plates that do not end at the

stiffeners but are continuous across the stiffeners, forming a one-dimensional

array of panels, as in a shear web, or a two-dimensional array, as in the
cover of a multi-web multi-spar wing or the skin of a multi-ring multi-
stringer fuselage. 1In these cases it may be reasonable to assume that an
edge which is common to two adjacent panels is forced to remain straight.
It is with such applications in mind that the present analysis and calcu-
lations were performed. The assumption of perfect flexibility for the
stiffeners was retained along some edges; along the other edges this

assumption was replaced by one of prescribed stiffener shapes plus pre-
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scribed resultants applied externally to_the stiffeners of prescribed
éhape. Although the prescribed shape that one would use in most appli-
cations 1s that of straightness, the prescribed shape was left arbitrary
in the present analysis for the sake of generality énd because such'
generality entailed very little additional complication.

Figure 18 illustrates some of the types of structure to which the
present paper and references 1, 2 and 3 may be applicable. Part a of
figure 18 represents a single-bay structure made up of non-coplanar flat
rectangular plates with stiffeners at their junctions and ends. The
non-coplanarity of the sides suggests that there is little restraint
against deformation of the plate edges. The assumption that any panel,
such as 1234, is a plate with four perfectly flexible edge stiffeners
may therefore be valid, and consequently the method of references 1, 2 and
3 may be applicable for the detailed stress analysis of such a panel.

Part b of figure 18 depicts a two—-bay structure. If the loading
and temperature distributions are approximately symmetrical about the
central bulkhead or ring, then a panel such as 1234 may be considered as
a plate bounded by the perfectly flexible stiffeners (12, 23, and 34) and
one stiffener (41) that is forced to remain straight. Then .appendix C
and figures 4a, 6, 7, 8, and 9 of the present paper may be applicable.

Part c of figure 18 denotes a multi-bay wing. In the shear web
of such a wing, an interior panel, such as 1234, may be approximately like
a rectangular plate with two opposite edges held straight (14 and 23)

and with perfectly flexible stiffeners along the other two edges (12 and
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34). Appendix D and figures 4b, 10, 11, 12, 13 of the present paper may
therefore be applicable to such a panel.

Part d of figure 18 represents the cover of a multi-spar multi-rib
wing or a plate with integral waffle-like stiffening. An interior panel,
such as 1234, may be approximately a plate with four edge held straight,
and appendix E and fiéures 4c, 16, 17 of the present paper may be appli-
cable to its analysis.

In the above cases, wherever a stiffener is common to two adjacent
plate, such as stiffener 12 in figure 18a or stiffener 14 in 18b, its

cross sectional area should be divided in a reasonable way between the two

plates which it serves. For example, if in figures 18a, b and d the adjacent

plates are nearly identical in geometry, loading, and temperature distri-

bution, then it is reasonable to divide each shared stiffener equally between

the two plates which it serves. The same can be said about stiffeners 14
and 23 in figure 18c if the adjacent panels of the shear are similar in
geometry, heating, and loading. However, the two plates which share
stiffener 34 in figure 18c (one in the shear web and one in the top cover)
could be quite different. In such a case it might not be easy to decide
on the effective cross-sectional area to be used for stiffener 34 when
analyzing the plate 1234. When such ambiguities result in a significant
uncertainty in the computed results, then an analysis of the present kind,
based on isolating one plate and its surrounding stiffeners as a unit,
might not be applicable. 1In the unlikely event that the cover plates are
missing in figure 18c, or have negligible cross-sectional area, then the

ambiguity referred to above would, of course, not exist.
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The above remarks concerﬁ the applicability of the present analysis
in general. Some brief comments are, perhaps, also in order on the appli-
cability of the computed thermal-stress data plotted in figures 6 to 13,
16, and 17. The geometry and temperature distributions to be expected in
actual design situations are, of course, manifold. It is therefore not
suggested that the geometries and temperature distributions assumed in the
thermal-stress calculations will correspond exactly to a broad spectrum

of particular design problems. Nevertheless, it is felt that the calcu-

lations made and the results obtained serve two purposes. First, they attest

to the feasibility of the calculation procedure, thereby encouraging its
use for other specific geometries and temperature distributions which might

correspond more closely to a particular application. Second, they provide

qualitative information on the thermal plane stresses that may be encountered

during aerodynamic (or other) heating as a result of a temperature lag between

a thin plate and the more massive or better insulated stiffening elements
to which it is attached. The pillow-shaped temperature distribution

8 sin (mx/a) sin (my/a) employed in the calculations is not too much dif-
ferent from the experimental temperatures obtained in a square plate that
was heated by lamps and cooled by water circulating through hollow edge
stiffeners (fig. 11 of ref. 4), although the experimental distribution is
somewhat flatter in the central region of the plate and might be better
represented by the temperature distributions used in reference 3. 1In the

latter reference the temperatures were assumed constant in a central plateau
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region of the plate, zero at the stiffeners, and varying as one—quarter
of a sine wave in the transition zone between the stiffeners and the
central plateau.

In the thermal-stress calculations (fig. 6 to 13, 16, and 17),
the rigid stiffeners were assumed to be entirely free of external re-

straint. That is, the external resultants, such as T, and T2 in figure

1
4b, were assumed to be zero along with all the other force loadings.
Thus, although certain edges were forced to remain straight, these edges
were free to translate. In an actual situation, there might exist some
restraint against this translation due to the presence of surrounding
structure. The effect of such restraint would be to introduce non-zero

values of the external resultants T T2’ etc., with magnitudes depending

1°
upon the relative stiffness of the plate-stiffener combination and the
surrounding structure. The stresses due to such externally developed
restraining forces would have to be superimposed as corrections upon
those shown in figures 6 to 13, 16 and 17. TFigures 14 and 15 show the
nature of these correction stresses for the case in which restraining
forces Tl = T2 = T are developed in the structure of figure 4b. From
figures l1l4a and 15a, it can be seen that one effect of preventing the
separation of the end stiffeners (through the development of a negative
value of T) is to superimpose a nearly uniform compressive stress in the
x-direction. From figures l4c and 15c, it is seen that another effect

is, possibly, the introduction of high plate shear stresses near the

corners. However, as mentioned earlier, the shear stress singularity
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at the plate corners would be eliminated in an actual structure by the
presence of some flexural stiffness in the x-wise stiffeners.

To illustrate the use of data of the type shown in figures 14
and 15, let us consider the thermal-stress problem whose results are
given in figure 11, but this time assume that constraining forces
T1 = T2 = T exist, which are of appropriate (negative) magnitude to
prevent completely the overall thermal expansion of the structure in
the x-direction. In order to determine T, it is necessary to determine
the elongation Al due to thermal stress from the data of figure 11, the

elongation A, due to T from the data of figure 14, and equate their sum

2
to zero and solve the resulting equation for T. The two required elon-
gations can be obtained by integration of the stiffener strains 53(x)
or of the plate strains ex(x,y) along any line parallel to the x-axis.
The stiffener strains are slightly more convenient in this case, because

of the absence of the thermal contribution e3(x); they give rise to the

following expressions for A, and A2:

1
% Py e
Al = J NG dx = 20)aa J o ARa d Cz)
0 0
N Ta 2 Pax) o
By = J AR X =2 EJ T 4@
0 0

Using numerical integration (trapezoidal rule) in conjunction with figures
lle and l4e to evaluate the right-hand sides of these expressions, one

obtains
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]

A. = 0.2393 9raa

1

A

2 0.2185 Ta/(AE)

The condition Al + AZ = 0 then gives

T = = .4439 9aahE

The plate and stiffener stresses due to this value of T can now
be obtained from figure 14. Superposition of these stresses and the
ones in figure 11 wili give the stresses produced by the pillow-shaped
temperature rise when the overall expansion of the plate in the x-direc-
tion is prevented. The results are shown by the dotted curve of figure
19. The solid curves are the data of figure 11, repeated for comparison.
It is8 seen from figures 19a and e that the normal stresses in the x-direc-
tion are, of course, appreciably altered by the suppression of the overall
thermal expansion in the x-direction. Figures 19b and d show only minor
alterations in the normal stresses in the y-direction. Figure 19c shows
that the shear stresses also are only slightly affected, except in the
neighborhood of the corner (x and y < 0.1la), where the effect of the singu-
larity in shear stress due to T is felt. Accepting this singularity as
illusory for reasons already cited, it can be concluded that in this
example the suppression of the x-wise expansion has a significant effect

only on the x-wise normal stresses.
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CONCLUDING REMARKS

Many detailed plane-stress analyses are available in the literature
for rectangular plates with unstiffened edges, subjected to boundary
forces or non-uniform temperature distributions. Rectangular plates with
stiffened edges have been treated to a lesser extent in the literature,
mainly in "shear-lag" analyses. These are generally restricted to uni-
form temperatures and unidirectional loading and are characterized by
simplifying assumptions regarding the stresses or elastic constants.

Rectangular plates in practice generally have stiffening members
along their edges and may be subjected to non-uniform temperature rises
and multidirectional loading. In addition it may be important to have
some of the detailed information about the stresses which is lost in the
usual type of shear-lag amnalysis. Therefore in reference 1 a unified
analysis of the edge-stiffened rectangular plate was presented, including
both non-uniform temperature distributions and prescribed boundary load-
ings of a very general nature. The plate material was assumed to be
homogeneous, linearly elastic, and orthotropic, but no further simpli-
fying assumptions were introduced regarding the stress distributions
or the elastic properties of the plate. The stiffeners were assumed to
have finite extensional stiffness but negligible flexural stiffness. The
boundary conditions considered were entirely those of prescribed running
normal and shear loading along the outer periphery of the stiffeners and

prescribed forces at the stiffener ends.
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The present paper represents a generalization of reference 1.

It permits the boundary condition of prescribéd normal loading along
some of the edges to be replaced by the boundary condition of pre-
scribed shape of the stiffener axis. Generally, the prescribed shape
that one would encounter in practite is that of straightness due to
symmetry, continuity, or rigid fixation. However, for the sake of
generality, and because it involved no great complication, the present
analysis also permits prescribed edge shapes other than straight. Along
the remaining edges the stiffeners have been assumed to have finite ex-
tensional stiffness but negligible bending stiffness, as in reference 1.
Through this generalization of the boundary conditions, certain problems
can be handled which are not directly solvable by the method of reference
1 alone.

The present method and that of reference 1 are based on Fourier
series - double series for the plate stress function, single series for
the stiffener tensions and certain other quantities. In some cases many
terms of the series may be needed for sufficient accuracy, and therefore
the feasibility of these methods depends on the availability of high-speed
computers. This feasibility has been tested in the present paper through
twelve specific numerical examples, solved with the aid of an IBM 7074
computer. The machine time required to obtain detailed stress surveys in
one quadrant or in one half of the structure, depending on the type of

symmetry, ranged from 2.5 minutes to 21 minutes in these examples.
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The assumption of negligible bending stiffness for those stiffeners
whose shape is not.prescribed sometimes produces infinite plate shear
stress at a corner where such a stiffener meets a stiffener of prescribed
shape. This was noted in figures 14 and 15 of the present paper. A
gimilar anomaly was observed in references 1, 2 and 3. Its elimination
would require the incorporation of finite stiffener flexural stiffness

into the analysis.
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APPENDIX A

SYMBOLS

Remarks: (i) The subscript 1, 2, 3 or 4 on a symbol for a stiffener-
related quantity identifies the stiffener location as x =0, x=a, y =0,
or y = b, respectively. (ii) The.Fourier éoefficients of known quantities
(loads, thermal strains), and combinations of such coefficients, are
generally represented by capital letters, while the Fourier coefficients
of initially unknown quantities (e.g., internal stresses) are denoted by
small letters. (iii) The symbols for convenience represent the known

quantities in illustrative problems are not listed here.

a plate dimension in x direction; see figure 1.
a Fourier coefficients in series expansion for the stress

function F(x,y); see equations (B15), (B17) and (B50).

aﬁ,ag,aé",a;“ Fourier coefficients in series expansions for F(0,y),

F(a,y), F(x,0), F(x,b) respectively; see equations
(B13) and (B14).
Al’A2’A5’A4 stiffener cross-sectional areas.

A common value of the above when all four stiffeners are

identical and uniform.

b plate dimension in y direction; see figure 1.
1 " [l 1 . . . . . .
Bn’Bn’Bm ,Bm Fourier coefficients in series expansions for Nl’Nz’NS’Nh
respectively; see equations (4) and (s).
B a/b
Cin Fourier coefficients in series expansion for Ny(x,y); see

equations (B22) and (B35).
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Fourier coefficients in series expansions for N&(O,Y) and

Ny(a,y) respectively; see equations (B23) and (B24).
e G nn/b, cy C, nn/b.

plate compliances defined by equations (3).

AB/Al, if A; = A, and Ay = Ay

Fourier coefficients in series expansion for 85F/5x3;

see equations (B41l) and (BL46).

(7 (2) 2 (7(l
defined by equation (D1l).
defined by equation (D12).

] 4

. . L
Fourier coefficients in series expansion for O F/dx ;

see equations (B26) and (B37).

el(Y); 92 (Y): GB(X)) eu(x)

ex(xxy)) ey(x) y)

11

El} 2) 5} )+

F(X: y)

&’ &n

stiffener thermal strains; see figure 2.

plate thermal strains; see figure 2.

L 2 2 L
Cg(mn/a) + (Ch - 203)(mn/a) (nn/b)° + Cl(nn/b)
value of above with m = 1 and n = 1.

Young's modulus for stiffeners.

Young's modulus for stiffeners and isotropic plate when

all have the same Young's modulus.

stress function for plate; see equation (B4).
Fourier coefficients in series expansion for Nx(x,y);
see equations (B19) and (B34).

Fourier coefficients in series expansions for Nx(x,O)

and Nx(x,b) respectively; see equations (B20) and (B21).
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s

] 1 1"

AT g C1 mn/a, g, C1 mr/a

h thickness when plate is isotropic.
h 3

Fourier coefficients in series expansions for SBF/By ;

see equation (B42) and (BLT).

H (1/E__)(2/a)(nn/0)%c, - (2/a)(b/nx)
i 1, 2, 3, or k.
i Fourier coefficients in series expansion a”F/ay“;

see equations (B27) and (B38).

jmn Fourier coefficients in series expansion for N#y; see
equation (B25); see equation (B56) for value of 300
Kmn combinations of known Fourier coefficients, defined

by equation (B69).
Kﬁ,KH,K&",K&" Fourier coefficients in series expansions for prescribed
boundary curvatures; see equations (8) to (12).
2 Fourier coefficients in series expansion for (BBF/Bx2ay);
see equations (B43) and (B48).
m,n,p,q summation indexes (integers).
M upper limit on m, p, and i.
Ml’MQ’M5’Mh loading resultants; see figures 4.
n summation index (integer).
N upper limit on n and q.
N (), 2, (3), 5 (), 1, )
external running tensions, force per unit length; see figure 1.
Nx’Ny’ny plate stress-resultants, force per unit length; see figure 3.
) summation index (integer).

Fourier coefficients in series expansion for BAF/BX2By2;

see equations (B28) and (B39).
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Pl(Y))P2(y))P5(X):Ph(X)

stiffener cross-sectional tensions; see figure 3.

P (0),P, (5),B,(0), B, (), P5(0), 5 (a), B, (0, B, (=)

‘P,Q

Q

stiffener end loéds; see figure 1.
integers appearing in sinusoidal temperature distribution
expansion; see equation (CT71).

summation index (integer).

2, (v),a5(¥)5 a5(x), 9, (x)

U 4

R' RH R'" Rlln
n’ n’ m

g! S'" S""
n’ n’ m’ m

external shear-flow loadings; see figure 1.

Fourier coefficients in series expansions for ql,qz,qB,qh
respectively; see equations (6) and (7).

combinations of known Fourier coefficients, defined by
equations (B68) and (B69).

Fourier coefficients in series expansions for the stiffener

cross sectional tensions; see equations (B16) and (B60).

Sr(ll),séz),sn(lﬁ),sn(lh)

completely known loading terms; defined by equations (CL17)

through (C20).

5(5),5(6) 5(T) 4(8)

SH S'" SHH
n n’ m
(1)
mn
(@)

mn

§(3),§(4)
m m

completely known loading terms; defined by equations (D18)
through (D21).

completely known loading terms; defined by equations (El5)
through (E18).

known quantities; defined by equation (C21).

known quantities; defined by equation (D22).

known loading terms, defined by equations (C58b) and (C59a).
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t' tlr 'L t""
n’ n’ m o m

Tl TII T'" Tllll
n’ n’m

Ty T Tso Ty

(o]

vV
mp

V!
mp
1

vmn

1 n y 1t 1
LATN AR AR

y
vy

ll [ 1"
ﬁ n,Y Y

Fourier coefficients in series expansions for the derivatives
of the stiffener cross-sectional tensions; see equations
(B29) and (B33).

Fourier coefficients in series expansion for Bzey/ax? +
Beex/ayg; see equation (15), also equations (16), (17)
and (18).

Fourier coefficients in series expansions for thermal-
strain discontinuities between stiffeners and plate edges;
see equations (13) and (14).

loading resultants; see figure 4.

stiffener temperature for the sinusoidal plate temperature
distribution.

X and y components of displacements in plate.

known quantities, defined by equation (C57a).

plate displacement component in y-direction.

known quantities, defined by equation {(C58a).

known quantities, defined by equation (D58a).

known quantities, defined by equation (D58c).

Fourier coefficients in series expansions for (8ey/8x)x=o
etc.; see equations (19) through (23).

Fourier coefficients in series expansion for (83F/ax8y2);
see equations (B44) and (BL9).

Cartesian coordinates; see figure 1

Cartesian coordinate; see figure 1

dummy variables representing y

known loading terms; see equations (C?Oa),(C66a),(067a),

and (C68a).
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Zﬁ,Z; known quantities; defined by equations (D64a) and (D58b).

a coefficient of thermal expansion of plate and stiffeners

in numerical -examples.

a, (n),0,(n),05(m), 0 (m)

known quantities;
Bl(n),Bz(m) known gquantities,
7n 7n’7ﬂ"’7"" known quantities,

and (C564).
751),7é2) known quantities,
Tg TE T&" known quantities,
Iﬁl),Fiz) known quantities,
S S i known quantities,

mp’ “mn’ mn
r{8) p(3) p()
mp mn ° mn

6n known
5(1) 5(2) knowa
n n

8& 8; 6&" 6"" known

(E25c) and (E26a).

quantities,

defined by equations (B6T).

defined by equations (B6T).

defined by equations (C22),(C23), (D23)

given
given
given

given

given

by
by
by

by

by

equations (C10) and (D6).
equations (E19) through (E21).
equations (E25a) and (E25b).

equation (C36).

equation (D35).

loading terms, defined by equations (Cl11).

loading terms, defined by equations (D7) and (D8).

loading terms, defined by equations (E23a), (E2hka),

aij Kronecker's delta, unity when both subscripts are equal,
zero otherwise.

Ah completely known loading terms, defined by equation (C6ka).

A, Aﬁ Aﬁ; known quantities, defined by equations (C56a), (C56b) and
(c56¢c).

Aél),Aéi) known quantities, defined by equations (D61b) and (D63a).

ex(x, Y): €y(x; Y): 7Xy(x: Y)

plate total strains; see equations (2).

€1 () e, (), €5(x), €, (x)

stiffener total strains; see equations (1)
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g1'1
SR

ARRIS

“r;m, T];r"n

O

e' ,e" ,8'" @
mp® mp® mMpT mp

oV (@) g
mp ’ mp

p

(3) o(%)
m )

known quantities,
known quantities,
known quantities,

known guantities,

known gquantities,

known quantities,

mp

defined by
defined by
defined by

defined by

defined by

given by equations (CLk0), (ck2).

equations (D56b).
equations (C34).
(D33).

(ch1).

equations

equations

(D39).

equations

known quantities, given by equations (D38) and (DLO).

@Ap,@;n known gquantities, defined by egquations (D57a) and (D57Tb).
Kl,K2 area-ratio parameter used in numerical example, defined
by equations (C80)

A common value of.)x.l and %2 when they are egual.
A&n,Aﬁn known quantities; defined by equations (E23%b) and (E25d).
Hén’“;n known quantities, defined by equations (C12) and (E25e).
v&n,v;n known quantities, defined by equations (Cl3) and (E25f).
v Poisson's ratio for isotropic plate.
g%n’gan known quantities, defined by equations (C35).
géi),géi) known quantities, defined by equations (D3k).
gpn known quantities, defined by equations (DSé6c).
= known guantities, defined by equations {(C56e).
zﬁ,zg known quantities, defined by equations (C56f) and (b6la).
th known quantities, defined by equations (E22).
Oé,p; known quantities, -defined by equations (C43).

(1) (2) L . .

n Py known quantities, defined by equations (DL1).
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oip,oéﬁ,c;; known quantities, defined by
¢n known quantities, defined by
¢£,¢;,¢ﬁ",¢£" known quantities, defined by
(1) 4(2) 4(3) 4
g1, g(2),g(3) 4(1)
known quantities, defined by
17 LA (1Y R
o, %ﬁn %ﬁn'
; (L)g(4) _ 4(2)4(3)
oy ¢n ¢n ¢n ¢n
(l) _t
¢n 1- =
wmn known gquantities, defined by
wﬁn known quantities, defined by
wmnp known quantities, defined by
Wénp known quantities, defined by
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APPENDIX B

ANATLYSTIS FOR THE CASE IN WHICH THE BOUNDARY CONDITIONS
ARE ENTIRELY THOSE OF PRESCRIBED LOADING (ref. 1)

The case in which curvatures are prescribed along one or more edges
can best be analyzed by making appropriate modifications in the basic
analysis of reference 1, in which the boundary conditions are entirely
those of prescribed loading. Therefore the analysis of reference 1
for the case of constant-area stiffeners is summarized in this appendix,
and portions of it will be used as needed in the subsequent appendices

when various cases of prescribed boundary curvature are considered.

Basic Equations

With u(x,y) and v(x,y) denoting the x- and y-components, respectively,
of infinitesimal displacement, the strain-displacement relations for the

plate are

€ = = € = == Y=t = (B1)

Equstions (Bl) imply the following compatibility condition on the strains

azyxy 626X e
OxOy - Byg - 32 =0 (B2)

The plate equilibrium equations, namely

BNX aNx aNx B_NX
3= dy 0 5% ¢ dy © (83)

imply the existence of a stress function F(x,y) such that
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N = ¥F N = & N_ = - (B4)
x 8y2 y NE Xy ~ Oxdy
Eliminating € ey and 7xy in equation (B2) by means of the stress-
strain relations, equations (2), and then N N& and ny through equations

(B4), yields the following form of the compatibility equation:

I 4 b e e

OF oF J'F y x

C, —1 * (c), - 2c,) +C + + =0 (B5)
2 ax 4 3 Bx28y2 1 Byh e Byg

Considering infinitesimal lengths of the stiffeners as free bodies,
and utilizing the third of equations (B4) to express ny at the plate
edges in terms of F(x,y), one obtains the following equilibrium equations

governing the longitudinal variations of the stiffener axial forces.

&P /ay - (3F/3xdy),_o - a(y) =
ar,/ay + (3°F/axdy),_, + a,(y) = ©
5 ¢ (B6)
dPB/dx - (9 F/Bxéy)yzo - qB(x) =0
ap, /ax + (BEF/BXSy)y=b + g (x) = 0 )

The stiffeners and plate edges, being integrally attached, must have
equal longitudinal strains along all four edges. Using the stress-strain
relations (egs. (1) and (2)), the stress function defined by equations
(B4), and the assumption of perfect stiffener flexibility (i.e.,

(Nx)x=0 = Nl(y), etc.), these conditions lead to the following

equations:
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.ilng) + le)(y) - ey(O,y)] - 02(3_2_];‘_ N CBNl(y) 6 \
11 32 x=
ii;:) + Lep(y) - e (a,3)] - CE(% _ + O, (y) = 0
- > (BT)
%% + Leg(x) - e, (x,0)] - cl(Zig)yzo + ol (x) = 0
;ﬁézi + Loy (x) - e (x,b)] - Cl(:ig)y=b cemG -0

Boundary Values of Stress Function F(x,y)

The fact that the distributed boundary normal loadings Nl(y),
Ne(y), NB(X), and Nh(x) are transmitted directly to the plate means
that the second derivative of F(x,y) in the direction of the edge is
known. Therefore two integrations will give the variation of F along
each edge in terms of the unknown corner values and the known Nl’ N2,
NB, N,- As an illustration, along the edge x = O, BeF(O,y)/ByE = Nl(y),

and two integrations lead to

b y!
F(0,) = 7(0,0) + £ (¢(0,0) - £(0,0) - [ [ w,(y")ayay' ] +
00

yy'
+[/ N, (y")dy"dy" (B8)
00

(Here ¥ has been assumed continuous along the perimeter of the plate,

including the corners.) Replacing Nl(y") by its series expansion,
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equation (4), and carrying out the integrations indicated in equation

(B8), one obtains
N

b4 IRt
F(0,y) = (0,0) + £ [F(0,b) - F(0,0)] - " Bi(Z) sin
n=1

(B9)

Similarly, the variation of F(x,y) along the other plate edges is as

follows: N
2
F(a,y) = F(a,0) + £[F(a,b) - F(a,0)] -Z BI'; (-f;) sin EE.X
n=1 (B10)
“ 2
F(x,0) = F(0,0) + 2[F(a,0)-F(0,0)] z B "(2) sin BIX
li , (B11)
F(x,b) = F(O,b) + §[F(a,b)—F(O,b)] -Z Br'r'l”(;—ﬂ) sin m_zzs
m=1 (B12)

For the later use it will be necessary to expand the boundary

values of F in single Fourier series of the following form:

N
F(0,y) = ) & sin (nry/b) (0<y<ov) _ |
n=1
N
Fla,y) = EZ: a; sin (nny/t) (0 <y <hb)
v (B13)
F(x,0) = E: %h" sin (mnx/a) (0 <x< a)
m=1
M
F(x,b) = Z ar'r'1” sin (mnx/a) (0 < x < a) )

=}
i
—

Determining the coefficients in these series through the formula
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S|

b
a) = (2/b) Jr F(0,y) sin (nny/b) dy,
0

etc;, with F(0,y), etc. replaced by the right-hand sides of equations

(B9) to (B12), one obtains

1 2 n b 2 !
a) = o= [F(0,0) - (-1)" F(0,b)] - (=) B} 3
" 2 n b e "
ay = o= [F(a,0) - (-1)" F(a,0)] - () B!
5 > (B14)

an' = & [F(0,0) - (+1)" F(a,0)] - (&) B!"

" 2 m a 2 mn
ar" = o7 [F(0,0) - (-1)" F(a,0)] - (&) B! ’

Series Assumptions for F(x,y) and Pl(y), szx)z Psgx)z and thx)

The stress function F(x,y) will be assumed to be representable in
the interior of the plate (i.e. in the open region 0 < x < a, 0 <y <b)

by the double Fourier series

M N
F(x,y) = Z Z a . sin (mnx/a) sin (nmy/b) (B15)

m=1 n=1

with as yet unknown coefficients. Eguation (B15) is not valid at the
plate edges; however there the values of F are already expressed in

series form by equations (B13) and (Bl4). Similarly the unknown stiffener

axial forces will be assumed in the form
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N

Pl(y) = Z s, sin (nny/b) (0 <y<hb) \
n=1
N
Pg(y) = Z Sr'l sin (axy/b) (0 <y <b)
n;Il P (B16)
P5(x) = ZE: s&" sin (mnx/a) (0 <x<a)
m=1
M
Pu(x) = z SI'I'IH sin (mnx/a) (0 <x<a) /

i
'_l

At the end cross sections the stiffener forces are already known from
the given loading (see fig. 1).
The coefficients in the series in equations (B15) and (B16) are

related to the left-hand sides through the usual formulas

b a
L ._ommx . nmy
a . = EE'J(jf F(x,y) sin = sin =+ dx dy (B17)
00
b
2 ., Ay
s = b_j( Pl(y) sin =% dy, ete. (18)
0

Series for the Derivatives of F(x,y) and P, P, P32 P,

The derivatives appearing in equations (B4) to (BT7) will be assumed

representable by the following series:

M N (0 <x<a)
N_ = BZF/By2 =Z Z g Sin (mnx/a) sin (nny/b)
m=1 n=1 (0 <y <b)
(B19)
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M
(Nx)y=0 = (321"/53’2) o= Z g, sin (mnx/a) (0 < x<a)
m= (B20)
(), = /™) Z " sin (mx/a) (0 < x < a) 1)
(0 < x< a)
N 82F/8 Z Z sin (mrnx/a) sin (nny/b)
m=1 n=1 (0 <y <b)
(B22)
N
(), o = (aeF/axe)x=o - E: c! sin (nmy/b) (0<y<b) m5)
n=1
N
(Ny)x=a = (BeF/axe) a = Z Cx"l sin (nwy/b) (0 <y <p) (51)
n=1
M N (0<x<a)
ny = -52F/8x8y = -Z Z Jy COS (mrx/a) cos (nwy/b)
m=0 n=0 (0 <y <0p)
(B25)
M N (0 < x < a)
3*F/ax" = Y ) e sin (mux/a) sin (any/o) (B26)
m=1 n=1 (0<y<vm)
M N (O < x<a)
BhF/Byu = Z z i o sin (mnx/a) sin (any/b) (B27)
m=1 n=1 (0<y<n).
M (0<x<a)
BuF/Bxe dy° z z P, Sin (mnx/a) sin (axy/b)
m=1 n=1 (0 <y <)
(B28)
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N

dPl/dy = Z t) cos (nxy/b) (0 <y <0D)
n=0 '
N

dP,/dy = }E: t cos (nmy/b) (0<y<0b)
n=0
M (B29)

de/d.x = Z t1" cos (mnx/a) (0 < x<a)
m=0
M

dP) /dx = ji: t" cos (mix/a) (0 < x<a)
m=0

where

b a
= %E‘j(J(.(aeF/ayz) sin (mnx/a) sin (nry/b) dx dy, etc.

&mn
(B30)
g = % Jf 82F/8y2)y=0 sin (mnx/a) dx, etc. (B31)
0
(2-6 (2 Sno
S = [f (825‘/6x8y)cos(m:rx/a)cos(nny/b)dxdy
(B32)
2 - 8nO f
L (dPl/dy) cos (nmy/b) dy, ete. (B33)
0

The coefficients appearing in the series for the derivatives (egs.
(B19) to (B29)) are not independent of the coefficients in the series for
the basic quantities (egs. (B15) and (B16)). The former can be related
to the latter by using integration-by—parts**in the right-hand sides of

equations (B30) to (B33). For example, two partial integrations with

*x
Such a technique was employed for plate bending problems by A. E. Green
(ref. 5), who ascribes its earlier use to S. Goldstein.
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Y

respect to y in equation (B30) give

2
Con = B [a - (-1 a"] - (B o (B34)
Similarly,
e =2 a0 L (21)® "] - (M)z a (B35)
mn a a n n a mn

[(-1)™" F(a,b) - (-1)" F(a,0) - (~-1)"F(0,b) + F(0,0)]

J.mn - ab
o-5 2-%
+ _I% bnO [(‘l)na;;l" _ ar;ln] + n_':)t mO {(_l)rré_g - aI"l] +
+ Ma n_;r a (B36)
mn 2 R m m:t32 . m m:rl+
e = o [e) ~ (-1) cn] - (—a) = [an - (-1) an] + (_a) a
(B37)
imn _ n_g% [gt}l _ (_l)ngr,r.l] _ (%)3% [al;ln - (..]_)n a;,'l"] + (n_g) amn
(B38)
p = 2= B2 [(-1)™PF(a,b) - (-1)" F(a,0) - (-1)" F(0,b) + F(0,0)]

2 2
g my nx _ay e _ rn 2 nsg me ry_ 0 n _ '
Ty ( a) b [(-1) an & I+ a( b) a [{-1) & an]

(B39)

mr,® oy
+(a) (b) &mn
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8! = —22 [(-1)" (o) - R (0)] + 5 s} \
2_—5
& = bn° [(-1)" P,(b) - By(0)] + 9% s!
2-8__ n : . P (BLO)
té" = — [(-1) P5(a) - P5(O)] = si“
3y 2—61110 [(_l)m + i _un
tm =T a Pll(a) - Ph(o)] “a “m y,

Reference 1 did not require series expansions for B3F/8x3, 63F/6y5,
85F/8x28y, and BBF/Bxayg, but the present paper will require such expansions
in the subsequent appendices. These derivatives will therefore be

assumed expandable in the following series:

M N (0<x<a)
85F/Bx5 = Z Z d_ cos (mnx/a) sin (any/b)
m=0 n=1 (0 <y<hb)
(B41)
M N (0 <x<a)
BBF/ay3 = Z Z h o sin (mnx/a) cos (nmy/b)
m=1 n=0 (0 <y <hb)
(BLk2)
M N
(0 <x<a)
BBF/szay = Z szn sin (mnx/a) cos (nny/b)
m=1 n=0 (0 Syfb)
(Bk3)
M N .
_ (0 <x<a)
85F/Bx8y2 = Z Z W . COS (mx/a) sin (nmy/t)
m=0 n=1 (0 <y<b)
(Blk)
where
(2—6m0) 2 b f I3 3 5 .
e === "t f[ {(07F/ox”) cos (mmx/a) sin (nwy/b) dxdy, etc.
0 (BY5)
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By using integration-by-parts in the right~hand sides of above equations,

one obtains

d = .2-_%1_0' [(-l)m "o oer] - 2(&’.‘)2 [(- l)m "_ogr] - (M)3
mn a °a °n a' a ®n a’ %mn
(B46)
Similarly,
2-8110 n n a"" n nr 5
hoo= =5 [(-1)%) - gm]-—()[(l) -a"l - () e,
(B4T7)
mn .
b =7 & mn
2 z—ano mst mtn \m
= - =7 (DT F(a,b) - (1) F(a,0) - (-1)"F(0,b) + F(0,0)]
- ho mt 2 0 un " 2 mx n:r m mit 2 ni
- ) DTy -l - S = (- ap-atl - () e
(BL48)
__bm
Yinn b dmn
(2—8mo) 2 ,/nn mtn m n
= - ———a—'—( YI(-1) F(a,b) - (-1)" F(a,0) - (-1)" F(0,b) + F(0,0)]
SmE 2t gy - Some o g 1)"a) - ar]
a b b - %n "% a b &n
_ mnonx
a b ®mn
(B49)
Through equations (B34) to (B40O) and (B46) to (B49) all the unknown
coefficients in the derivative series are expressed in terms of the basic

unknowns a__;
mn

and F(a,b)

Cr'ly CI'T‘I’ gl;l’ g;;li SI!J.’ S;: 51;1": 5;1'1"3 F(O:O): F(O)b): F(a,O)
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Series Solution for Basic Equations (B5) to (B7)

Considering first equation (B5), substituting into it the series
expansions for equations (15) and (B27) to (B29), eliminating &’ imn’

mn

and p_ through (B37) to (B39), eliminating al, a;, a&", and a " through

equations (B14), and then solving for a 2 one obtains

& = : 5 [(-1)™" F(a,b) - (-1)" F(a,0) - (-1)® ¥(0,b) + F(0,0)]
mnaw
1 2 mx ' n 2n ' n  u-
B E;; {Tmn * a EE [cn B (-l)mcn] C2 o _% [gm - (1) gmJCl
+ 2 mx (b 2 . Mpnyp (M 2 4 (Bx 2 5 .
3 2 &) 1B - (-1)BLIL() o, + () (¢ - C5)]
+..2_n:rt 8.2[ ) nB.... [nﬂg + (mnz ' _I]
b b (E;) By - (-1) m ] (_E) ¢y —E) (Ch - 205)
(B50)
where
mi 4 mn e nwx 2 nn 4
E.=0C(5) * (¢ - 2C3)(—;) (=) + Cl(—g (B51)

Thus the unknown & have been obtained in terms of the smaller class
of unknowns, CA, CH’ gé, g;, through the compatibility equation.

Turning now to the stiffener equilibrium equations (B6), substituting
the series from equations (B25), (B29) and (6), and utilizing equations
(B40), one obtains the relationships
2-5no S nn - .

—22 (-1 P (b)) - PO+ Bsr - q- ) =0
m=0
(n=0,1,2,...,N)

(B52)
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y

g4

2-% M
—522 [(-1)" p,y(0) - (@)1 + B sn+qr v ) (-1 g =0
m=0
(n=0: 1,2,.. .>N) (353)
2-51110 m myxt o
— [(1)7 pgla) - pg(0)] + = 52" - 1" - Z Spn = ©
n=0
(m=0,1,2,...,M) (B54)
2-8 N
amo [(‘l)m Pu(a) - Ph(o)] + EE Sg" + Q;" + E: ('l)n jmn =0
=0
(m=0: 112) .. ';M) (B55)
From equations (B36) and (Blk), it is noted that
Joo = 35 LF(a,b) - F(a,0) - F(0,b) + F(0,0)] (B56)
Jop = % %; (Bﬁ - B;) for n # O (B57)
o = % %; (Bi" - B;") for m # O (B58)

Using these results in the n=0 and m=0 equations (B52) to (B55), one
obtains four expansions for jOO’ of which three are redundant because
the structure as a whole in equilibrium (see ref. 1). Selecting the

first as non-redundant,
M

Jop = " * £ (B (6) - P (0) + Z o (B2 - B!"))  (B59)
m=1

Finally, substituting into equations (B7) the series expansions
from equations (&), (13), (B16), (B20), (B21), (B23), and (B2L4), one

obtains
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sﬁ/(AlEl) T - CyeptCgB =0 \
s/ (AB,) + T8 - C, el + CBB; =0
n " 1"t > (B6O )
s) /(ABEB) Tp = Cy &y ¥ CsB" =0
s "/(&F)) + T'" - C, g + cﬁBg" =0 )

Reduction in the Number of Simultaneous Eqguations

Essentially the problem has now been reduced to the solution of

equations (B50), (B52) to (B55) and (B60) for the unknowns a 5 S

sg, é”, s;", s c;, g, and g;. Since equation (B50) explicitly

expresses a  in terms of cﬂ, cﬁ, g, and g;, the solution of equations

(B52) to (B55), and (B6O) for s.s sg, sé", sg", el cg, g, and g; will

be sufficient. However, further reduction in the number of equations

to be solved may still be attained by using equations (B60) to express

e

1" 1nn
s', s s
n’ "n’ "m

and s'" in terms of c/, e ;> g and gm Equations (B52) to

(B55), with the n=0 and m=0 equations excluded, can then be used to

obtain a system of simultaneous equations in which the cﬂ, cg, &, and
g; are the only unknowns. This is accomplished by eliminating sﬁ, s;,
si", and s&" with the aid of equations (B60), and Jn by means of the

following expression

2
mrgt

Spp = - B g+ S [or o (-1)erle, + 2 BE [0 - (-1)%g"IcC )
(m#0)
(nf0)

+ i B [0 - (<178 e, + 2 (25 (3 - (-1)e,)

(B61)
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which is obtained from equations (B36), (Blk), and (B50). The resulting

form of equations (B52) to (B55) is:

- - - ( -1)"
c’ al(n) - c;; Bl(n) =R - — Z gm (n=1,2,...,N)
(B62)

_-l n - "
c, Bl(n) + e ae(n) = R +

- g, - (-1
282 § (1) “n

— mn
m=L (863)
N m -
2 c' - (-1)" "
i Mg 'y 2
g, % (m) - gp,(m) = R!" - =(F5) Z 1 T 2 (w=1,2,...,M)
n=l (B64)
N - m
- - 2 ! - (-1)" "
-g'B,(m) + g" o (m) = R"" + 2mny= N7 (-1)* -2 (m=1,2 M)
S“m™2 Sn iy m \ a./ L_‘ 7 Emn AN )& y L)
et (865)
where

E:I'l =cp Cz(nn/b), 61"; =c; Ce(nﬁ/b), ér;x = gn'lcl(myr/a), gm g Cl(mn/a)

M (B66)
N 2 (mr/a)
@ (n) = AE) + Z _EL—
m=1 ma
M 2
_ 2 mn/a)
ay(n) = A B, + 5 Z LZ‘
mn
m=1
N
_ 2 fnn{b)
az(m) = AE; + 3 Z E__
n=1
N > (B6T)
2 nn b
n=1 mn
M m 2
_2 -1) (mn/a
51(11) T a Z E
— mn
m=1
N n 2
B (m) = _2_ S-l) (nn{b)
2 b Z Emn )
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and R', R", R'", R;" are the following combinations of known thermal

and loading quantities:

R: = Q) + 2[P,(0) - (-1)"P (0)] + 2=(B.-B]) + AE, B(e,B) + 1)) - ZK
RY = -Q + %[Pe(o) - (-1 P ()] - —E;(Bn B') + AE, b(c By + T/ )+ E:( l)mK
' m=1
Rl;lu - Qn.ln + [P (O) (- l)mP (a)]+ (B.n un) + A3E3 %(C3BI;1"+TI;1") _ Z Kmn
N
er;ln = -Q;Ill" + %[Pu(O)‘('l)m-Pu(a)] b_m_;t_ BI;IH B"")+A)+ h (C B11||+Tnn)+ L‘( l n
n=1
(BE8)
with
3
K_ = —{ G x)’ c (B! - (1)) - E(%%) ¢ () - (-1)" B!])
(B69)

1"

Equations (B62) to (B65) can be solved simultaneously for cly e,

gi, and gé. With these known, equations (B60) will furnish the values
] " [} 1n .
of s, s, s'", s, and equations (B57) to (B59) and (B61) the values

of the jmn' Equations (B16) will then give the stiffener stresses,

equations (B19) to (B25) the plate stresses.
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APPENDIX C

ANALYSIS FOR THE CASE OF ONE STIFFENER
WITH PRESCRIBED DISPLACEMENT CONDITIONS

In this appendix the case of figure 4a is considered. In this
case the edge x = O of the plate is assumed to be forced into a
prescribed shape by means of an attached rigid stiffener (shown shaded
in fig. Y4a) which also has this prescribed shape. The shape is defined
by (Beu/ayg)x=o, which is assumed to be a given function of y and
expandable in the form of a Fourier series, equation (8), with known
Fourier coefficients K! (n=1,2, ..., N).

By virtue of the new conditions along the edge x = O, certain
quantities which were considered to be known or given in the previous
appendix are now unknown. These are (a) the N Fourier coefficients
Bﬁ which, through the first of equations (ﬁ), described the running
tension Nx(O,y) acting mutually between the stiffener and the edge of
the plate, and (b) the tension PB(O) and Pu(o) existing at the left
ends of the horizontal stiffeners. Because the stiffener along x = O
is now rigid, these N+2 quantities, needed in equations (B68) and (B69),
are no longer known from the given external loading, but must be regarded
as additional unknowns along with the c_, CH’ &y g;.

What makes the present case still solvable in the face of this
increase in the number of unknowns is the fact that there are exactly
N+2 new conditions which must be imposed on the problem. N of these new
conditions state that the curvature B2u/8y2 along the edge x=0 of the

plate, produced by the stresses in the plate, must, when expanded in a
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Fourier series, be consistent with the known Fourier coefficients
X' (n=1,2,...,N) associated with the prescribed shape of the edge.
Tﬁe remaining two of the new conditions éxpress the fact that the
rigid stiffener at x=0 must be in equilibrium under the action of the

unknown- P5(O), Pu(o), Nx(o,y) and the known T, and M (see fig. 5).

1
It should be noted that P,(0) and P, (0) are no longer applied by an
agent that is external to the entire structure, but are applied by
the rigid stiffener along x=0. They are forces that now act mutually
between the rigid vertical stiffener at x=0 and the two horizontal
stiffeners.

The explicit mathematical formulation of these N+2 new conditions

and their incorporation into the analysis of the previous appendix will

constitute the bulk of the present appendix.

Differentiating the last of the strain-displacement equations, (BL),

with respect to y, one obtains

32 oy de
cuw __x_ _¥Y
Bye dy ox

Eliminating the strains in terms of the stresses by means of equations
(2), and then the stresses in terms of the stress function through equations

(B4), this becomes

2 2 3 de

oTu o F J°F
—=(C -C )____C or __ ¥ (c]_)
6y2 3 4 6x8y2 2 3 ox

Thus the curvatures Bgu/ay2 of the edge x=0 of the plate are
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) o2y o, -
=2 €.-C;) - )
Bye x=0 57k Bxay x 0 ij x=0 ox 'x=0

(c2)

The terms on the right-hand side of this equation can be expressed in

series form with the aid of equations (19), (B41) and (Bik4). The

result is
N M M
nx . _ . . nxy
%=0 Z[(C 5) b Z Jmn c2 Z dmn Vn] s
y i m=0 m=0

(c3)

Comparing equations (C3) and (8), one obtains the following N equations

representing the condition of prescribed curvature along the edge x=0:

M M
= (¢, - c,) 9% z: 3 - E: a -V (n=1,2,...,N)
m=0 m=0 ( CLI- )

The unknowns jmn and dmn in this system of equations can be expressed
in terms of the basic unknowns BA, cﬁ, cg, g&,g;. To accomplish this
it is first observed that equations (B57) and (B61) can both be
represented by the following single equation, in which any undefined

quantities are to be considered zero:

S = - mEqr o+ 2ME (e - ()" ety + 22 (g - (-1)"glc,)

fE G (R - (1B, + 2 () - (-1 1c, )

(c5)

Furthermore, from equations (B46), (Bik), (B50), and (B51), one obtains

- c'] (cé)
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L 2
Bdn = (27 1 - & Lol (-1)%ie, () + (g - 20)(ED) () )

(m#0)
(n;éO)

+ (m“) ) g, - (-1 grlc

2 m:r2 }_1_1'_[2[‘ ( m "
-a(_a) (b Bnl- -1) Bn ‘Cl

+
o'|o

P‘E g e e + _
T By - (-0 I ) ¢, + (5 (clL 2¢,)]
(€7)
and these two equations can be represented by the following single
equation in which, once again, undefined quantities are to be regarded

as zero.

mi 5 2..Smo nu e 2 m 2
= () Ty - ) leg- 0" el () + () (cy-2¢

mn 3
(nf0)

)
2" &) (g - (-1" g
2mn2nn2[, m..]c
-5 ) R By - (-1 Bl

2 2
o 1 r nn nﬂ' mrp _
* = 3 - (DT BN o+ (D) (g, - 2C5)]

a b 1
(c8)

o'io

Substituting from equations (CS5) and (C8) into equation (Ck), and

separating B‘ terms, one obtains

2 2 2-%
k! = -V! - B'@l—’l) c, Z Lo () - o) 15
m=0
“ 1 my nm 2 mx 2
+y 5 (T (D0 ) - Cp() ]
m=0

2 2
+0) (B[ (05-¢,) () -0, (5) MG Filey-(-1) g">+

a

c2<9%)[c1(5‘—§) o5 CJ12 BNy (1)) B B(er (1))

a b

70

e IGE RN



g

This expression can be solved for each unknown BA in terms of the

"

- 1 1] t 1 > s
corresponding Kn’ Vn, cn, cn and-all the &n and gm, with the following

result:

M B
®
B' = —(%-4' —:(Lﬁ Z ul;m[-él;l‘(-l) J"’ T— ZV' [cr'l-( 1)" c
Tn n m=l m=0 <c9)

(1) . . s . )
where Tn ’Bn’umn and an are known quantities and are defined as follows:
(l) ji: [(c,-cC )(EE)2 -C (EE)Q] oy (c10) -
¢1 E 3 47> p 2\ a a '
m=0

5 =-K:- Z (o chxn’f (““‘) iz (e, (5 ye “‘°>( 1)"B; ]

n 2 mat 2 nax 2 mx
-C,oLe, p) ~C5() 1 5 [B."-(-1)"Br"1]
{C11)
2
i ___]_‘_ - E - Ell-[_n_ﬂ_e_
P T En [(05 C) ) C2( a) 1 3 b (c12)
2 -8
Y mn = El_[cl ) -c S5 15— (c13)
mn

Thus the unknown BA have, in effect, through equation (C9), been replaced
by an equal number of known Kﬁ. If the edge x=0 is forced to remain

straight, then the Kﬁ are all zero.

Formulation of Boundary Condition of Equilibrium

The normal forces acting on the rigid stiffener (see fig. 5) must

be self-equilibrating. Therefore

b
p,(0) + B, (0) + f N (0,y) ay = T,
0]

and
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J | T)b
Ph(O)b.+Jr y N (0,y) dy = 5+ M
0

Substituting N

Nk(o,y) = E: BA sin (E%X)

n=1

and solving for PB(O) and PA(O), one obtains

T M
- - b 5y 1 _ 1
PB(O) = Bt S 5 (c1k)
n=1
N
T M
b
R0 =), (D Zmiv 3 (c15)
n=1

Thus, in effect, the unknown PB(O) and Ph(O) have been expressed in terms

of the known Tl and. Ml'

Separating B' Terms in R', R", R'", R""
8} I T m—

2y UL

Equations (C14), (C15), and (B69) can be used to eliminate PB(O)’
PA(O), and K from equations (B68). If the B! terms are then written
separately from the rest, equations (B68) become

R' = S(l) + B!
n n 7n n

R" = S(2) - "B!
n n 7n n

N (c16)
g = gl3) 4 B' H
m m n mn
n=1

N
R = sl E:(-lle' H
m m n mn
n=1 ]
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where Sfll) R Sz(12) 5 Slflj ) and SS") are completely known loading terms defined

as follows:

Sﬁl) = %[Plﬁo)'('l)npl(bil- o Ba t A1E1 = §: sty
(017)
sée) = -Qﬁ + % [P2(O) (-1)" P, (p)1 + —5; B; + AE, b (c B" + T")
M
£ S om s (s
m=1
ngj) — Qh',l" -(-l)m % PB(a) + ﬁ (Br;ln _ Br|r|1u) + A5E5 F_lg (CBBI;ln + Tl;ln)
N
T M
Y2 o
n=1
Srglu) = -Q;;l" - %(_l) ]_‘_(a) bmﬂ BI;IH - Bnu) + AuEh_ S (C Bun + Tnn)
T 2M
+ Z (-l)nSrE]I];) + —i‘— + :-% (c20)
n=1
with
2 3 5
S = Ei; {mgg mn o= colBy" - (- l)nB""] + (- l)m : nﬂ) ¢, B,J

(c21)

H o 7, and 7;'1 are also known quantities and are defined by the following

equations:

3

—%) c (c22)

mlm

M
b nn 1
V. — + — + —_
L£%) ann AlEl b C z E
m=1

1
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w_ D E: el 2 '
"ah T anx + (-1) E 8 ( ) C (ca3)
m=1 o
and
3
1 2 ,nx 2b
Hn=E_ 2 (o) %" amm (cak)

Revision of Equations (B62) to (B65)

Substituting from equations (C16) into equations (B62) to (B65), one obtains

- - (1) 2 nm\2 - - (-1)° gm
cp ay(n) - cp By(n) =87 + 5B - 5(5) :E: E

(n=1,2,...,N) (ca5)

. 2 (-1)*
“Cp By(n) + ey ap(n) = Sie) - ) E: (-1)" h E &
m=1 mn
(n=1,2,...,N) (c26)
N N - m
_ 2 c' - (-1) ¢
as(m) - gy By(m) = 353) iy E: Bk, - (% E: E
n=1 n=1 mol
(m=1,2,...,M) (ca7)
- - (k) = n mr ) n%n " (-l)m "
-5 )+ B o (m) = s ) (e m v 2R Z& R n

n=1 mn

(m=1,2,...,M) (c28)

If equation (C9) is now used to eliminate the BA, one obtains the follow-
ing system of simultaneous equations in which cﬁ, cg, g& and g& are the

only unknowns:
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Sige - angn = g1+ Z tn (B - (1" )
w=1 (n=12, ..., N) (c29)
M
gy g - e Y e 7R
m=1 (n=1,2, ..., N) . (C30)
M N
Z D [y (m) .- 7_ Mond - Z g" T
p=1 n=1
N N
+ Z o It oo Z oo _ 5(5) H
n=1nmn n=1nmn m nz_:l nz
(m=1,2,3,...,M) (c31)
M M N
= 1 n 1 [
) Z p %mp © Z €p [ah(m)amp = L 77—1—) “pn]
p=1 p=1 n=1 'n
N N N 5
- ELA el ot = ss‘) - Z (-1)n—(—rll) H
n=1 n=1 n=1 7n
(m=1,2,3,...,M) (c32)
where M
7!
gi = oy (n) -7y 2 Vi
7n m=0
7! M
By = B,(n) -3y Z U™ v (c33)
7n m=0
7" M
¢I;1" = Bl(n) = 7_1'11) Z v
7n m=0

5



17" M
N
g = e - iy ) (W, (e33)

m=0

c_ (1), a %
gn - Sn * 1)
n
(c3k)
v _ o) _ T
gn - Sn 1)
Tn
g, - 7I'1 p! - (E"‘l[. 2 ._.];_.
mn 7nil mn b b Em-n
(€35)
§n _ 7 ! - (H)e .(.:_'-l:)_i‘}
mn D *m "% Vo E
Y S~ m
n
N
no_ - - 1 !
mp = Bo(@)8 Z( l)nHmn 10 "pn
n=1 7n \
oY= g(_!_f)a 1 __1 H '
mn a' a’ E (1) "mn Z pn P (636)
mn 7 —
n p=0
Ill" m 2 l M )
= (-1)" = (&) - 7——1 -1)Pv:
o 2 " a Emn 1) Hmn Z( 1) Vpn
n p=0

and
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N
n 1 .
%ap = OmpPo(m) - Z U7 By 7D M
n=1 n

Q
{

2
s (1) [2 (B i- - 7— Z pn] (e57)

"n p=0

2
o"" = (-l)n [(_1)m_§_ (.n_lg) %n— - mn —(—y Z ( l)p 'V'

'n p=0

Some uncoupling of unknowns in equations (G31) and (C32) can be
effected by adding and subtracting equations corresponding to the same

value of m. By adding; one obtains

M M N N
“ t n " 1 ] - - n = 1l
Y B oty ELOLt ). - 2. G-
p=1 p=1 n=1,3... n=1,5...
(n oad) (n odd) (c38)
By subtracting, one obtains
M M N N
- TR L PRI ot ' - o - "
Z gpemp Z gpemp N Z cn Tlm.n Z nnmn Pm
p=1 p=1 n=2,k4... n=2,4%. ..
(n even) (n even) (C39)

where

N
o = [asm) - By(m)e, -2 ) mnT Y

n=1,3..
(n odd)
(cho)
N
" 1 1
emp = [au(m) - B, (m) 2 E: H o - Hon
n=1,3... 7n
(n odd)



C ok (E)g L2y ;
"n T3 ‘a’ E (1) “mn pn
mn n b= |
(ck1)
X M
n m 3 . ma L - = Py
= (-1) a ( a) Emn (1) Hmn Z('l) an
"n p=0
N
LI SR - l i
Opp = LOz(m) + By(m)) B -2 Z fan (T Mpn
n=2,)+... 7n
(n even)
(ch2)

N
" ] li :
emp = [ah(m) + 52(111) J amp -2 Z Hmn l) U-Pn

(n even)

5
pl;l=s§15)+s +2Z 7—’11)Hmn
n=1,3... Tn
(n odd) (ch3)
Ch3

" (3) s oa(l) Z
Py = S + 2 —Z—— an
n=2,4. n
(n even)
Equation (C38) involves only the odd subscript cﬁ and CH’ and equation

(C39) only the even-subscript cg and cg. These equations may replace

equations (C31) and (C32).

Reduction in the Number of Simultaneous Equations

Equations (C29) and (C30), written for the same value of n, can be

solved for EA and E; in terms of all the é& and é&. The result is
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R {g ¢nn + §n¢n + Z(¢""§' _ ¢u§n ) [g - (_l)n 'g;_l]

n “pn n’pn
p=1 (Clk)

M
-n 1 SRl Ay 1t g n "
R L Y @, - gEn) 3y - (-1 E 1)
=L (ch5)

where
—_ ] mn - " 1t
?, = ¢n¢n ¢n¢n ’
Utilizing equations (CL4) and (C45) to eliminate the EA and E;
in equations (C38) and (C39), and combining like terms, one obtains the

following simultaneous equations involving only the é& and é; as unknowns:

M N M N N
RGN SR R - LR S A S D I A
p=1 n=1,3... = n=1,3... n=1,3..
(n odd) (n odd) (n odd)
{ch6)

M=
g !
o -
o)
g =

+
™1
Lo}

1
T =
w1
NS
©
™
<

g
S
|
=
]
™
<=

Lo]
i
H
o}
1l
no

o
=
i
n
=

n=2,4..
(n even) (n even) (n even)

(m=1,2, ..., M (ck6)

where
Vonp = (¢;"é§n S Pk T o (¢5“§§n - BiEn) (ck7)
T] n”
Y = B G  L) - 5 (G G (ck8)

The advantage of this reduction is evident: whereas the original simultaneous

equations system, equations (C29) to (C32) requires the solution of 2N+2M

simultaneous equations, the reduced system, equations (CL6), contains only

9



oM simultaneous equations. Thus N may be taken arbitrarily large with-
out increasing the number of simultaneous equations that have to be

solved.

Procedure for Use of Equations

The procedure for using the foregoing analysis will now be summarized:
Equations (C46) are first solved for the'éﬁ and é;. With these known,
equations (Chl4) and (Cl5) give directly the Eﬂ and E;, and equation (C9)

i", s;", and equations

the B'. Equations (B60) then give the Sps sg, s
(B57) to (B49) and (B61) the Jon- Finally, equations (B16) and (B19) to

(B25) give the stiffener and plate stresses.

Special Case: Symmetry About y = b/2

When the structure and loading are symmetrical about the line
y = b/2 considerable simplification of the foregoing equations is possible.
The symmetry implies that A5 = A, e5(x) = eu(x), Pl(o) = Pl(b), PQ(O) =
Py(b), P5(0) = P, (0), P5(a) = By(a), N5(x) = Ny(x), az(x) = -q,(x), Ty
and Ml = 0. It also implies that B&" = B;”, Qé” = - Q;", Té” = T;", and
a5(m) = ah(m). In addition, as a result of the symmetry the following
quantities all vanish for n even: Kﬂ, Tmn’ B;, Qﬁ, Qg, Tﬁ, Tg, and Vﬁ.

Consequently the following quantities vanish for n even:

Sgl), S§2) (see eqs. (€17) and (C18)); 8 (eq. (C11)); Cﬁ, Qg (egs. (C34)),

Von (eq. (Ck8)).
and the following equalities hold:

355) = séh) (egs. (C19) and (C20))

o' = e% (egs. (CLO))

1
mp p
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91;1; =6 (eqs. (ck2))

1m 1
mp
p; =0 (the second equation of egs. (Ch3))

Therefore, equations (C46) become

M N N
Z(gl') I z Vanp) = P " Z Von )
p:l n=l,3... n=l,3--.
(n odd) (n cdd)
N N >(Ch9)
E: (gﬁ - gp)(eép + E: 'wmnp) =0 (m=1,2,...,M)
p=l n=2,]+...
(n odd) /
Whence
o= " - e, 0
gp gp (p=1, 2 M) (c50)
and M N N
ot ? — ..]: LI
Y & ety ) =Eenc 9 wn) (o)
p=1 n=1,3, . n=1, 3,
(n odd)

m=1,2, ..., M)

From equation (CkLk) and (CL5), together with (C50) and the earlier

consequences of symmetry, there results

Cﬁ =0
for n even, (c52)
1] =0
n
and, for n odd,
M
% ) :
" = 1 m 1A Tn [ - e 1t 1
‘n T @, (;n¢n * gn¢n te (¢n gpn ¢n§pq)gp]
p=1
(€53)

(e]
]

M
1" 1 tefa ney 1irg - TRl o
e A2 ) G- f) &)
p=1
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Similarly, from equation {C9)

Bﬁ =0 for n even, (c5h)

and, for n odd,

—Z_ —(_Zmngm TZO mn Erll_(-l)m

(c55)

The procedure for the symmetrical case can now be summarized as

follows: Solve equations (C51) simultaneously for the éé, then use

equations (C53) and §C55) to compute the odd-subscript Eé, c; and B .

n

With these known, equations (B60) will furnish the values of s)» s,

2

sé"} sg" (n 0dd), and equations (B57) and (B61l) the values of the un
(n 0odd). Equations (B16) and (B19) to (B25), with the only odd values

of n included, will then give the stiffener and plate stresses.

Limiting Case of Large Stiffener Areas

The case in which the stiffener cross-sectional areas are large
compared with the plate cross-sectional area is of practical and
theoretical interest. In order to study this case, let it be assumed
that AlEl’ 2E2, A3E5
constant ratios with each other. Then equations (C29) to (C32) can be

and AuE11L will approach infinity while maintaining

simplified through the following steps: First, divide equation (C29)

by A (c30) by A.E., (C31) by ALE_, and (C32) by A E), and rearrange

121 o0’ 373

them to obtain

Aﬁ A;
c'[1-= + —1+ c"[Z' - ]
n n AlEl n n AlEl

E: [g -(- l)n " (l) 2565 +

(056)
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Tt

AE n mn AE n mn

where M

I}
™
=
—
[»
~
s
o
—
]
jas}
<

A"
n

with
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+E;‘1[1+Ag]=Aga Z[gm'(l) gl tn

(c57)

(c58)

(c59)

(Cc56a)

{(c56b)

(C56c)

(c564)

(C56e)



v
mp

M
) :E: (-1)" v 2% c, (c56¢)

M

Y vt v (c57a)

m=0

N

Z H _%17 o (c58a)

n=1 7n '
n (c580)
" (C59a)

H C59a

e

Examining the coefficients of the unknowns Eﬁ, 5;, éﬁ and é; in equations

(c56) through (C59), it is observed that some of these coefficients are

of the order of 1, while the others are of the order of l/(aeEllAlEl)'

Retaining only terms of the order of 1 in these coefficients, one reduces

equations

gq

5(&)
m

= -
=3
=
=
=

(c56) to (C59) to the following system:

M '
7]
Y e Ry %
m=1 7n (C60)
(c61)
(cé2)
(c63)
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Using equations (C61) through (C63) to simplify equation (C60), the

latter becomes

c! = (célk)
n AlEl
where
N TP i TR 3 _(3) N _’S‘A)J“' % ¢ )
n 1 - z, n A2E n n 171 = A5E3 AhEh 7erl) b ’3

(c6lha)

Thus a solution fegs. (C61) through (C6L4)) is obtained which gives

1"

the unknowns c' n’ c" n’ gé, ém explicitly without the necessity of solving
simultaneous equations. This solution can be seen to be correct to terms

of the first degree in l/(a E With Eﬁ, etc., known, the

ll 1 l)
procedure for computing stresses is the same as described earlier for
the general case.

A solution correct to terms of the second degree in l/(a E A lEl)

can be obtained by the following procedure: First substitute from equations

(C62) to (C64) into (C57) to obtain

En — 1 { g-;- 1 An 11
n (1 Un ] A2E2 A2E2 AlEl
AxBy
Mo 5(3) (%)
L m n m
- — - (-1)" —=1¢&" ) (cé5)
A2E2 A5E5 AuEu mn
m=1
Expanding
Un
1/[1 + ]
A2E2

in a power series of the form
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and neglecting the terms which are powers of l/(a E_.A_E_.) higher than

1122
second in equations (C65) gives
c gﬁ Y; (c66)
el = + c
noAE, () g )P
h
e A Mo 5(3) (1)
wo_ 1" n o _ 1
Yoo= Ut A iy AzEez[AE !l)AE]E’
171 1 D0 LY
(c66a)

By further application of this technique, using the first order approxi-
mations given by equations {C61) to (C64), the second order approximations

for é and g {from eqs. €C58) and (C59)) can be expressed by following

equations: _
_ SI$15) Y'"
gl = A5E3 + s 2 (ceT)
3 5
5(1") g
- m m
gl = + (cé8)
m AE 2
1L -(ALLEM)
where M N ( M §(1‘L)
o —(5) < 3> 1 ' P 1
Ym - mesm +Z Z Sp Hmn (D LLpn * A5E3 Z AMEl+ l-lmp
p=1 n=1 "n p=1
(pfm)
BZAE I""+AE5 ZAE e (c67a)
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—(3) N
11 11 (h) l
Ym_ = =V S + A Eh E: E: E: mn —1__ pn
5 > p=1 n=1
(p#m)
A1']. n
* hE, Z IE %mn - AF Z AE Omn  (C68a)
=1 11 =1 22

Substituting from equations {C66), (C67), and (C68) into equation (C56),

one obtains

_ l g' gll Yn A"
°p = e w adl v et S
[1-2 +5 g ] 171 272 (AE,) 171
| .
' }b_d: £(§‘€3) N (-1)“<§‘9) B )
ALE 2 AE 2
= 57 (ABEE) b (AE))
m o “n
5 5 C v 7513 (c69)
7&1) b "3 AE
Expanding
“a
1/[1- = + ]
n AlEl

in a power series of the form

1 1 1 D S Y- I
1-K+e¢ 1-K 1+ ¢ 1- K(l S «

where A
¢

1-X

€' =
and neglecting powers of l/(a E A E)

(C69) gives
A v

- = ¢
171 n ‘AlEl)
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where Mo 5(3) s® L

R ST 1 m__ n_m j _mn_ nx
Y=g o= A% 1-:A Z[ O w N (O
n ¥y 7
m=1 n
M S(03) 5(4)
+ A E [—-(1nm]A'” )2 [
5L G e e )
m=1 m=1
11 “|
_(_l)n m ] mn n_gc
(AuEh)g 7(1) 5
1" gll Y”
1 n —_ 2 n —
+ —=—— A EA' = + AE Al - (AE) —5 =]
1-= 'l n AE, n 11 A2E2 n 11 (A E2) n
(cT0a)

Equations (C66), (C6T7), (C68) and (CT0) constitute a solution correct

to the second degree in l/(a E ), in which the necessity of solving

ll 1 1

simultaneous equations is once again obviated.

Illustrative Thermal-Stress Problem

In order to illustrate the details involved in the application of
the foregoing analytical results, a particular example will be considered
which has the following characteristics:

a) Edge x=0 kept straight; therefore the X' in equation (8) are all
Zero.

b) Plate isotropic, therefore elastic constants are given by equations
(3)-

¢) Plate and stiffeners have the same Young's modulus E.
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a) A, = Bos by = By

e) No force loading.

f) Stiffener temperature constant at the value To‘

g) Plate temperatures T(x,y) symmetrical about both centerlines

(x = a/2, y = b/2) and varying sinusoidally in accordance with the

following equation:

A
»
A

(0 < a)
T(x,y) = T, + © sin (225) sin (Q%X)

(0 <

A
O
1A

b)

(c71)
where © is a constant, representing the temperature rise of the plate
center relative to the stiffeners, and P and Q are odd integers.

h) Plate and stiffeners have the same coefficient of expansion Q.
These are the only specializations to be presented later, the problem
was further specialized to the case of a square plate (b=a), with all
stiffeners identical (Al =A =A_ = Ah)’ and subjected to a "pillow-

2 p)
shaped" temperature distribution (P = @

1).

Reduction of general equations to special case. - From the given

temperature distribution one obtains the following plate and stiffener

thermal strains:

e, = ey = a[To + 6 sin EEE sin ng] KCYZ)
e, = OT i=1,2, 3 k4 (¢73)
Therefore
2 2
e d%e 2 2 _
v —L a0 [(BE) + (35) ] sin 22X gin Y
dy Ox a ' &
{CTh)
oy Pr . Qny
(8x ) o = o® = sin =5
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and
e)(y) - ey (0,y) = o, - of =0

'ez(y) = ey(a:Y) =0
(¢75)

e3(x) ex(x,O) =0

0

eu(x) - ex(x,b)
Equations (C75) reflect the absence of any temperature discontinuity
between stiffeners and plate in this example. Substituting from equations
(CT4) and (C75) into the right-hand sides of equations (14), (16), and

{23), one obtains

T, =T =T "= " =0 (c76)
T = -5_% 09(1)2 (2° + ¢°8%) (C77)
mn ~ mP nQ a Q "
and P
Vﬁ = Qo = SnQ (c78)
where
B =a/b (c79)

Due to the absence of prescribed forces, the following quantities are

all zero:
P,(0),P,(b),P,(0),Py(b),P;(a), P, (a) (fig. La)

T ,M (fig. La)

1’1
Wttt @un
B',B "B (see egs. (4))
Q;I’Q;'IJQT'HH)%';I" (See eqs' (6))
(It should be noted that P5(O)’ Ph(O) and BA do not necessarily vanish.)
It will be convenient to introduce additional dimensionless parameters

xl, Ke, and C, defined as follows:
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A o= hah/(zreAl) = hah/(n2A2)_
Ay = 4bh/(n:2A3) = hbh/(:rreAh) (c80)
C = A /A,

and to note, from equations (B51) and (3), that

2
E .= (nh/auEh)(m2 + n232) (c81)

Because in this example the structure and loading are symmetrical

about y = b/2, the simplified system of equations, namely eqguations

(050) throuch (055). will be used for the determination of the
(C50) through (C55), will be used for the determination of the
Y
c', ¢” and B! The quantities needed in order to use these equations

will now be evaluated.
Substituting from equations (3), (C77), (C78), and (CB1) into

equations (Cl0) to (Cl3), one obtains

M 2 2.2
. [i® + (2+v)n"B"1(2-8. )
(1) 22 i0 .
7 = -(n"B“/akh) E (c10')
n / o) [i2 + n2B2]2
e B ([B+ (2+v)7B7) :
b= - 2nB2[m2 + (2+v)n2B2] (c12')
2.2 2
o nB{n"B° - vm“1(2 - Smo) (13')
mn a2 + 028272

Substituting into equations (C17) to (C24) from equations (C77) and

(¢81), one obtains

91




(1)
S = & _ oOFh (c1r")
n nQ [P2 + Q2B2]
(2) PQB
S =8 . a®Eh ——=2 (c181)
n nQ (P2 + g B2) .
(3) _ PQB ' .
8,”" = 8 p aBEh (P2 N Q2B2) (c19')
s(h) = & o 0OEh —2% (c20)
" (F° + Q°B%)
M
.2 4nB _ 2n°B2 1 .
7. = B v —xz + - 2: 2, n2B2]2 (C22 )
i=1
M
3.3 i
w1 2n”B (1) -z
T wE T T x Z[e 200 (ce5')
) i~ + n"B]
i=1
3.3
H = 2’8 2 (cokt)

mn n[m2 . n2B2]2 nnB

Substituting from equations (B6T), (C10'), (C13'), (C22') and (023')

into equations (C33), one obtains

Py = ME G,

Po = ME G, ’
(C33')

¢I;ln - ABE 5r;ln

¢£n - ABE arl;ln

where 5; through ﬁ;" are numerical constants defined as follows:
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M
10 3)
2

2
i=1 [l ¥
2.2 LY
{A+4vn"B® + 2 n'B ]
L Z (12 + %822 X {n2B2-v:i.2](2-8
+
M .2 2, 2,22
e [15+(2+v)a°B J(e-sio) i [17+ 087
' [12 . n232]2
i=0 (c33'a)

[3'.2 + n2B2 ]2

2.2 u L Z
[)\l+l+vn B~ + 2)\ 2 2 i 22 B
(-1)*[n"B" - vi ],(2'5'10)

4n°p2 Z [i +(2+v) ](2—sio im0 [i° + 028212
[i° + n?B°12 - .
i=0 (C33'p)
M .
Foo - Y ¢-1)* 5°
2 & (12 + 2522
bk 1-1)i
A {1+ 2n'B }
Z n“B°)° i [0"8° - vi®)(e-b,)
+
V22 Z [1 + (2+v)n°B ](2—5io) = [i% + n°B°)°
(12 + n28272
(C33'c)
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A M 2
ann =1 + _l 1
n 2 g;i [12 . neBe]e
\ M
L (-1)*
>‘1{1+2nBZ [2+222} M [B 2
. im1 Z. n“B -vi (2-810)
[i +(2+v)n J (2 - 8,0) 120 + n°B?]2
4n B 2: 2 5 1=
]
(c33'a)

Substituting from equations (C10') (ci1') {c17'), (c18'), (ce2'), and

(c23') into equations (C34), one obtains

H]

CI{l OBEh l;r'l an

(C3h)

" Fn
¢y = aBEn T° 3.0

4

where Er’l and El',l are known quantities given as follows

P{1 + uv + og'8" E: 2 =) {[P 2 (2+v Q il -1}

- _ _ P _ +QBJ [F° + ¢°B°)
= i + Q2B2J2
1=0 (C3k'a)
bk RN el CeeD L
P{1+ 2Q B }H - 1)
_ Z 2+Q2B2_|2 [P2 - Q,2B2]
A : N
n  [P° + Q°B°) ”Z i +(2+V)QBJ(2-5 o)
+ Q2B2]2
(c34'b)

Substituting from equations (C81), (C12'), (C22') and (C23') into equations

(C35), one obtains
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Eon = MEEL,
1" rali (C55 ' )
gpn = AlE §pn

where Eﬁn and E;n are known quantities given by the following equations:

[p2+(2+V)n2B2]{Kl + hvn 2ion nuB%z:

_ [i° + n°B2]° N n°B>
gl = -
pn ” L (2+v)n B°1(2 - 5,,) 2[p® + n°B°)°
2n“B [p +n B ] z: 5 555
» [i® + n"B7] '
i=0 (c35'a)
2 2.2 4 L g-l)
[p™+(2+v)n“B°] N (1L + 2n' B )
E‘n = Z 2 2_'2 ( l)p >‘- n B5
pn 5 5 5.5 M [i +(2+v)n B ](2-sio) 2[p + n2B2J2
2n“B [p +n“B7 ] 5 555
ico 7+ BT (¢35'b)

Substituting from (C81) into the third and last of equations (B6T),

one obtains

2 L
o%(m) = ABE + A E—SB E:

1 [m + n B J
-1 n
(m) = 2 B
P 2 2;; (2 + 0282

therefore N
(m) (m) = A.E(L + AB' Z n” )
az(m) - By(m) = Ay 2 > . 22,0

[m™ + n™B7]
n=1,3,...
(c82)

Substituting from equations (C82), (C10'), (C12') (C2k') into the first

of equations (CLO), one obtains
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p) 2 2 2. 2.2 mp
n=1,3..., (0 *0°B7]
(n odd)
N
N L n® 1 [p2 + (2+v) n2B2]
~2A5ENB N R M .2 22
. [m™+n“B] n°B - — [i™+(2+v)n"B](2-5, )
n=1,3 4 2, 222 sETAeTYY A\=70407
[p~+n"B"] 2 222
: [i© + n"B]
1=
(cko)

Substituting from equations {C81), (C10'), (C13'), (C24k') into equations

(Ck1), one obtains

o = M Ty
- (ch1t)
T = 418 Ty
where
3.3
2 Ao [—EB  _dg M 22 2
oL Ao L 2m2p2)2 1B }[: ("B -vi ](2-5io)
e B Nl i j%: [1%+(2+v)nB?] (e-8,)) = I 2 4 n28272
nB
2 . 222
icp [T+ "B (Ch1'a)
)
n-B 1 .
“n (-1" >‘1“12 Kl[[m2+n2B2]2 B - (;l)l[nsz-vi2](2-8io)
T (2+n2e2 ]2 5& [12+ (2+v)n282] (e-5,0) & (12 + o252 ]2
nB

Substituting from equations (C10'), (c1l'), (C19'), (c20'), (C24') into

the first of equations (C43), one obtains
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AP[_[Pe‘f?_(ﬁl@El. 1] [__£35_ 1,

(PP+PB%] PPl B
Py = OOER {8 gpq;ge__ M .2 22l }
" [FHa7) 5 5 o [TH(em)QBTI(2-8, )
Q E: [12 + Q?B2]2
i=0
(ch3')

Substituting from equations (C33'), (C35'), and (Ckl') into equation

(Ck7) one obtains

A (P B - B ) - (B B - B B )
mnp (@, 8o - B B

¥
(ck7m)
Substituting from equations (C33'), (C34'), (C41') into equation (CL8),

one obtains
8 [, (T, o + Ty F) - MO0 B + T BTy

i @, By - B B

¥
(ck8")
Substituting into equation (C51) from equations (CLO'), (C43'), (cui7')
and (C48'), one finally obtains the following system of simultaneous

equations for the unknown gr;ls

N po— — — —_ —_— -—

] C mn ] - 1M 1t - n C [1] t - 1 "
{5 T‘mn( an §mn angmn) T]rnn( an € mn angmn) + o[l + }\'QBl*z 0 J
n=1,3... C(arll all';" - a;"l a1:1") n=1,3.. (m2+n2B2)2

N
—ox B Z [ n® S S [m° + (2+v)n“B°]
2 (m2+n2B2)2 n2Bh M [i2+(2+v)n2B2](2-6 )
n=1,3..} [m2+n2B2]2 Z i0

[12

+ n2B2 ]2

Ja(m)

i=0
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P[[P2+(2+v)Q2i32] - g5B3 1

=5 i - My (2® + °8°) (n°+e8%)2 B
s L & [P el - 5y)
QB :E: 2 2 .22
I EUs o

_ A [ﬁﬁlq(cgéaiﬁu Eaaa) - 'ﬁ;lQ(cEéaén + f&%”
® nC (BB - P By

M N oy ANUE 1 Augn _ an THE Y 11
_ Z ( Z [nmn(C¢n gpn S_Z)'ngpn) Tlmn(can E‘pn angpn)]

c@F - BF")

p=1 n=1,3...
N
i n° 1 [p2+ (2+v )n2B2 ]
~2M,CB =553 - %5/ M (.2 2.2 )
[m™+n"B~] n B [i"+(2+v)n"B ](2-5. )
n=1,3... 2, 2242 i0
[p™+n"B"]
[i2 + n2B2]2
i=0
- P 1
(1-8,,) 6 (c51')
(m =1 2, p) M)
where
gl
= —B_
Procedure for numerical solution. - It will be observed that equations

(C51') are in a suitable form to be solved by the Gauss-Seidel iterative
procedure (ref. 6), since the equation for any particular value of m

has G(m) as its only unknown on the left-hand side and all the G's except
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S s el

G(m) as unknowns on the right-hand side. Solution by the Gauss-Seidel
procedure involves the initial assumption that all of the G(p) on the
right-hand side of the m=1 equation are equal to zero. This permits the
m=1 equation to be solved for an approximate value of G(l). Substituting
this approximate value, together with G(3) = G(4) = ... = O into the

m=2 equation permits that equation to be solved for an approximate value
of G(2). Continuing in such a fashion it is possible to obtain a set

of approximate values for G(1) through G(M). This set is called the
first-iteration solution to the system of equations. A second-iteration
solution is obtained in the same manner as the first except that the
initial values of G(2), G(3), etc. are those given by the first-iteration
solution. Third and higher iterations can be performed in a similar way.
As one generates more sets of solutions to the system of equations

there should appear a general observable trend whereby each individual
G(p) tends to approach a certain value. The calculation is stopped

when changes in all the G(p) values appear to be negligible (less than
.000001 in the present calculations) from one iteration to the next.

With the G(p) known, equations (C33') (C34'), (C35'), and (C53)

yield _ M
(/)8 g N TP /B + NTaTrey [GB"Es - FEr 1 B al)
C'(n) = '“”“"“T“*"**Ea“a“m *a ) =
n(@ g - grgen
nn n’'n
M
(ﬂ/u)an[)\lfﬁar';' /B+>\2E;§I'l]+2z [Cg—b'ljl"gr'm - 5;1—5._;n] gE G(p)
C"™(n) = p=1

n(@. 8" - B.8:")
(c53')
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where o

' n
c'{n) = om
c"

n _ n
¢"(n) = —om

With c'/ e, and g' known, equations (c10') to (C13'), and (C55)

yield:
5. Pr [P2+(2+v)Q2132] 1 MZ m[m +(2+v)n ] Gfm)
ng [P2 + Q,2B2] + B ]
B'(n) 5 M T ]< )
[1%+(2+v)®B21(2-5. ) 1%+ (2+v)n°B21(2-5,
Z 212 = " Z 2. 222 =
'+QB] = [i + n"B7)
M
Z[nQB2 - wn)(2-5_)
T [C'(a) - (-1)%"(n)]
i S (c55')
M .2 2.2
Z [1%+(2+v)n"B"1(2-8, )
2 2 2
i=0 (1 ]
where BA
B'(n) = —mm
Note that

G(m) = gﬁ/ (0®Eh)

i

c'(n) cr'l/(aeEh)

Cn (n)

c/(0BER)

With B! as known, from equations (C1k) and (C15), one obtains the
following tensions at the left ends of the x-wise stiffeners where they

Jjoin the rigid vertical stiffener:
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N
P3(O) = Ph(o) = -09A; EN, Z Ltn B'(n) §015')
n=1,3

With the coefficients c|, cl',; gr;l, g!'l'1 and B} as known quantities, equations
(B60) will furnish the values of sl s;, 51;1" s ‘sl'l’l", and equations (BST)

to (B59) end (B6L) the values of the i, Eauations (B16) will then

give the stiffener force, equations (B19) *Fo (B25) the plate stresses.

One obtains the following equations for these gquantities.

Pl(y) = OA,Fy Z [c'(n) - vB*'(n)] sin (n—gl) (0 <y<0p)
n=1,3... (83)
N
Pe(y) = OA z C"(n) sin (-‘%‘I) : (0 <y <0D)
n=1,3 (c8Y)
M
P3(x) = Ph(x) = 9A5Ea Z G(m) sin (E_ﬂa_?i) (0 <x<a)
m=L (c85)

N_ = 09Eh Z Z G(m,n) sin (FEX ) sin (-—’-rl) (0 <x<a)

m=1 n=1,3 (0 <y <hb)
(c86)
(Nx)y—o = (Nx)y'= = 0REh Z G(m) sin (mnx (0 < x<a)
m=1 (c87)

N, = 09Hh Z Z C(m,n) sin (m"x sin ()  (0<x<a)
m=1 n=1,3 (0<y<hb)

(c88)
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(Ny)x:o = O®Eh Z ¢'(n) sin (9%1) (0 <y <0D)
n=1,3... (c89)
N
(M), = OER Z C"(n) sin (Bbﬂ) (0 <y<b) (c0)
n=1,3... ‘
M N ) N
ny = -onEh[Z Z J(m,n) cos (E-EE) cos (B%X) +Z %(B%l cos (E}’.;I)]
m=1 n=1,3... _ n=1,3...
(0 <x<a)
(0 <y <) (co1)

vwhere G(m,n), C(m,n) and J(m,n) are known guantities and are defined

as follows

o ~ on°Be \ m 2
m,n) = F, A (mfc!(n) - (-1)" ¢"(n)] + 2nB" G(m))
JLm n '
+ 2mf_m2 + 2n232]B.' (n) _ Q.232 5 _ B
[ + 02822 (PP+¢fR%) P MR
\ 2; 2, o 22 2
C(’)=2mB§n)_m[m+2n o325 5
m,n n21321: [m2+n232]2 (P2+Q,2B2) mP nQ
+—2m—2—— [c'(n) - (-1)® ¢"(n)] + 20B° G(m))
;t[m2+n232_]2 {m n) - n m
J(mn) = —222__  @%®R'(n) - 1312[c'(n) - (-1)%"(n)] - 2mB® G(m))

x [m2 +1,12}32 _|2

PB4

(P2 + Q2B2) mP 6nQ (c83)
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And from the first of equations (%), one obtains the following

running tension between the rigid stiffener and the plate edge at x=0:

N N
= 1 3 n__‘lll - Z 1 s ,I_lﬂ
NXKO:Y)—Z anm(b)—aeEh B'(n) s1n(b)
n=1,3... n=1,3...
(0<y<b)  (CBY)
Numerical results for }\.l # 0 and A #£ 0. - The numerical procedure
(=4

and equations described above were applied to the special case of a

square plate (B = 1), with all stiffener areas equal (Al =4, = A5 = Ah)’
a pillow-shaped temperature distribution (P = Q = 1), and Poisson's
ratio v equals to 0.3. The assumption that B = 1 and all stiffener

areas are equal implies that A =X, (see eqs. (C71l)), and the common

1
symbol A will therefore be used for both 7\.1 and )\2.

The results obtained for the stiffener tensions and plate stress
are shown in dimensionless form in figure 6 for N = 2.0.and figure 7

for A =1.0. In general, stresses were computed at x/a and y/a interval

of 0O.1.

Limiting case of large stiffener areas. - For the case in which the

stiffener cross-sectional areas are very largé compared to the plate
cross-sectional area, equations (C60) to (C63) may be employed as approxi-
mations which become more and more accurate as the ratios of stiffener

to plate cross-sectional areas approach infinity. The quantities

Z, and Z needed in these equations are defined by equations (C56e)

and (C56f) vhich can be reduced to the following expressions if use is

made of equations (3), (Cl0'), and (C13'):
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i (naB2 - vm2)(2 - Smo)

— m=0 (m2 " naB2)2
N [m2+(2+v)n232](2 - amo) (c56'e)
ZM: ()™ (ngB - vm2)(2~8m0)
— m=0 " (m2 + HZBQ)E (c5612)
L 1
n i [o + (2+v)0°B°)(2 - 5_)
< @2 + o252)2

Substituting from equations (C10'), (c1i‘'), (ci2'), (c19'), (cz0'),

(c2k') and (C34') into equations (C61) and (C62), one obtains

e = o® %; LI (c61')
ot n h = .
=g, = ® -A; &, (cé2')
where
(1 + ogis" Z (1) JELE + (o) %) o,
. PQB [ + QP [2° + %)
"n T (P +Q2132 3 f [m +(2+v)Q2B23 (2-6 o)
QB
+ PR
(c61'a)
[P +(2+V)Q2132 G _ 1
2P({ - V55353 575)
S JPB___ 5 [° +QB] [m“+Q“B<1° @B
n (PP+o%e%) ™F i [i2 + (2+v) Q%82 (2-5i0)
: 2.2-2
10 [1° + &%) (C62'a)
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With ¢! ,gm and gm known, c' (eq. (C60)) can be reduced to the following
expressions if use is made of equations (3), (C10'), (c12'), (C34'),
(cé1'), (c62'), (C56'e), (C56'f)

p h 1 e =
c!' = o — — - — = 3'5 (060')
n Al l - :.n 1- -'n b n nQ
where
VPQ 72 [[P + (2+v QB 1.1
A [P + QB ] (c60'a)
n > Z [m +(2+v) ](2_5mo)
2
m=0 + Q B ]
c¥ = §'5 C" —,5 )-I-VB [i gm[m +(2+V 2] ]/{ZM: [m2+(2+v)n2B2](2-6m0)
n n°nQ n NN J ot [m2 + n2B2]2
(C60'b)
with
2 2.2
(1+2q Buz 2 {[P.+ée+;)§.B L. 1} P
o gQ}B _ » +Q [P™+Q7B"]
n 2.2 M
(F+q"8%) (a +(2+V)QB 12 - 5_)
5 5 _ '
B Z 552 (c60'c)
m=0 * QB

Substituting the above expressions for 61"1’ Eg, -ér;l and‘é;r'l inﬁo equation (c55),

one Ob talnS

.where
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_ Z (%8 - va®l(2-5_)

' [PP+(2+v)qB°]
5 o " o (5"} L i [F° + %% 5
n B M [m2+(2+v)Q,2B2](2-6m0) 2o M [m2+(2+v)Q2B2](2-8m0)
(1-=))an (2 22 QB Z 5 222
s m~ + QB"] s (m® + Q"B7]
(c55"a)
and
BY = M, 2 - 22,
- 2::[m+(2+v)n B ](2-6mo)
Z [ - PP
{Bﬁ i [m2+(2+v)n2B2]Em < c?‘l % [n2B2-vm2](2-6mo)
C =~ 2 + o2 2 I T-% L [n2enel 2
ne!! Mo(-1)™ [n%8° - vmg](z-smo)
_8nQ I Z (2 + n2B2)2
m=0 (c54™D)

With the B! known, equations (C14) and (C15) yield the following tensions
at the left ends of the x-wise stiffeners where they join the rigid

vertical stiffener, when terms of degree higher than 1 in Kl and A, are

2
neglected:
nﬁg
= = - N —_— "
P5(o) Ph(o) QQABE 28nQ ) (c15™)
With the coefficients cﬂ, c;, g& and g" known, the stiffener

stresses and the plate stresses are given as follows:

N
¥
P,(v) = oA EN, Z [ o = - vBXl sin (B1) (0 <y <b)
n
n=1,3...

(c85)
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where

N =n
ne
Pe(y) = QA EN, Z an EQ% sin (-I%X) (0 <y <b)
" n=1,3... (C86)
M B:rEm m
Pj(x) = Pu(x) = OteA5E)~.2 Z ~Im sin (—g}—{) (0 < x<a)
m=l (c87)
N
Nx=a9EhZ z anémnsin (%) sin (n_gx) (0<x<a)
m=1 n=1,3... (0 <y <0D)
(c88)
M Bvr:ém
(NX)y=O = (Nx)y=b = GOERN, Z o sin (%) (0 < x < a)
m=l (c89)
M N
N.V = ©FEh Z Z anQ Emn sin (m_ZE) sin (E%X) (0 < x<a)
m=1 n=1,3... (0 <y <hb)
N - (C%0)
(W), o= -m ) B3t Bsin (B
n=1,3 " (0 <y <)
(con)
M N
(Ny)x=a = -a©Eh {Z Z anQ Emn cos (%) cos (I—l—gx)
m=1 n=1,3
N R
Bn nm
+ Z ﬁanq cos ’(TX)] (0 <x<a)
n=1,53 (0<y <)
(C93)
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2=, 2 2=,
_ 52132 . 2mQB e 2m[m + 2Q2B ]}3n

= - - +
&mn (P2+Q2) mP ﬁe(l_zn)[mz_,erBz]z A2 + GBI
2K 2 2 21 . o

Emn=§r'1%l— lé{m.ngngBe '1}'5mp 2P 20

Q°n B [m“+Q"B~ | (P + @7B%)

2m5 EA
- (cok)
(1 - =) + &%)°
2 =, 3.5 =,

3 POB 2n“Be! , 2Q°B” B!

=-——6 <4
mn (P2+Q?B2) mP JT2[m2+Q'2B2]2(l_E:n) n[mg + Q?B2]2

With the B' known, the first of equations (4) yields the following
n

running tensions between the rigid stiffener and the plate edge at

x=0
N
= B' sipn (B
NX(O,y) = QOEh Z SnQ , sin { ) ) (0 <y <hb)
S (c95)
Numerical results for limiting case of large stiffener areas. - The

<
numerical results for Xl = )\2 = N = 0 for square plates (B=1) with all

stiffeners identical, subjected to a pillow-shaped temperature distribution

(P =Q=1) are presented in dimensionless form in figures 8 and 9.

The former represents for v = 0.3, the latter for v = 0.
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APPENDIX D

ANATYSIS FOR THE CASE OF TWO OPPOSITE STIFFENERS
WITH PRESCRIBED DISPLACEMENT CONDITIONS

This appendix considers the case of figure 4b, in which the stiffeners
at x = 0 and x = a are benf to prescribed shapes defined by known values
of K' and K; in equations (8) and (9). Correspondingly, the Fourier
coefficients Bﬂ and B;, which describe the running tension between
the stiffeners and the plate, are now unknowns. In addition the loading

resultants Tl’ M T2 and M.2 constitute four new knowns, supplanting

l)
P5(O)’ Pu(O), Pj(a) and Pu(a), which are now unknowns. Further intro-
ductory remarks can be made for this case which are obvious generalizations

of those in appendix C.

Formulation of Boundary Condition of Prescribed Curvature

The boundary curvatures Beu/ay2 of the edges x = 0 and x = a of

the plate are (see appendix C)

u 3r >r Oe
(—= = (C, - ¢ )(—=%) - C (%) - (=)
By2 x=0 5 4 Bx5y2 x=0 2 3% x=0 ox X=
(D1)
3Pu F F de
(%) = -c)—=) - (= - GFED
Byg x=a 3 ¥ 8x8y2 x=a 3% x=a ox x=a

The terms on the right-hand side of these equations can be expressed in
series form with the aid of equations (19),(20), B4l), and (B4k). The

result is
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o N M M
d%u _ o o ST ot ] sy DEY
gE)X_ = Z[(Cu 03) b /- Smn "~ G Z A = Vpl sin 5
yox= n=1 m=0 m=0
82 N M . M
ou - - an _1yms L -1 oy aip 2OY
3 2 e - Z [(Ch 03) b Z (-1) Jmn CEZ (-1) dmn Vn:I sin g
vy oX=a m=0 m=0

(p2)
Comparing equations (D2) with (8) and (9), one obtains the following 2N
equations representing the conditions of prescribed curvatures along the

edges x=0 and x=a:

M M
' - n i -
SR SE DI .
m=0 m=0

M
e o) B Y 0 g - 6Y D%
m=0 m=0

(n=1,2, ..., N)
(D3)

The unknown jmn and d in these equations can be expressed in terms of

H

the basic unknowns B/, B',c) el ,gm, (see appendix C).
Substituting from equations (C5) and (C8) into equations (D3), and

separating B/ and B” terms, one obtains

K! = -vI-B! (%5 ) chE [(c, CLF)(Im - ¢, (55 )](
m=0 '
+37 (2) ch( DEH 50 - ¢ m)°y (e
m=0

2
() [(C5 - ¢ ) - ()

zMz
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-(E)e, (o (B ° . (m") 12 BE(prna (1)l — 22 B(ero(-1)"e")]

2
2 (B)e, [ (50, ) (3 (m") g, - (-1 g)]]

(k)
- ey, 3 o L (00,05 - o) 1
m=0

nx 2 & 1 nx 2 6

) clzfm—nuc;ch)(—b) - o (™ )](
m=0.

- m 1 nrg 2 mx 2

+ ) {-1) 5 Ty (PIC5C)) - 0 () ]
2 ] n 2 ____mo n

(), Lo, () - ¢5(2Z) CJ2 B (i (1)) CBO BE(r (1))

2 2
+ S (E)c, [(05-¢,) () -C,(F) Mgy -1)"g) 1)

These equations can be solved for each unknown BA and B; in terms of the

corresponding Kﬁ, K;, cﬁ, c;, and all the gé, g Rearranging equations

(D4), one obtains

M M
e A D W I G i ) WA IR bl
m=1 m=0

M
(2) " (l) (2) Z ' - n'n Z S\ 1 _ (1)
B.7, By (1% gl (-1 + ) (-1)'v) [e) - (1)
m=1 m=0
(D5)
(l) iK' and v!' have been defined already in appendix C; where
n ? Mmn mn Y pp H
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M
£2) . ) Cl S %HL [(C5Cy) (9{-) c (= ) ] (
=0

(D6)
(1) < 1 mx | 2
S D) 7T (P50 (F) - (%) ]
m=0
2
-Cyle, (BF) - (BE)?) BE B BE [prv - (-1)"80"))
(o7)
2 2
8{2) v+ Z (Eh (1, G50 (F) - () ]
m=0 mn
oyley ) - oy (B0 ) BE2 B (pin L (3 g
(D8)

Solving simultaneous equations (D5) for Br'1 and B;, one obtains

Dy
By =1
n
(p9)
1" D;'l
Bp =1
n
where
2 2
D = (7§2)) - (7(1)) (D10)
M
- () + 52 Z( 1% (- (17 + o Y () e (-7
m=1 m=0
M
_7511)5511)'71(11)2Pl;m[.én',l‘('l)n "J 7(1) Z V! [Cn _ (_l)m E;]
=t (p11)
and
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ey {25 (1) Z( 1) [5-(-1)7 "}+71(11)Z( -1)"vr [or-(-1)"e;]

m=1 m=0
(2) (l) (2) Z " [gm-( l) (2) Z [cn_ (- )ma;;]
m=0

(p12)

Thus the unknown Bﬁ, B; have, in effect, through equations (D9), been
supplanted by an equal number of known Kﬁ and K;. If the edges x=0

and x=a are forced to remain straight, then the Kﬂ and K; are all zero.

Formulation of Boundary Conditions of Equilibrium

The normal forces acting on the rigid stiffener at x=0 must be self-
equilibrating. Therefore equations (C14%) and (C15) of appendix C apply

also in the present case. They are:

T, M
b A S
P5(0)=- Z = Bl + = (D13)
n=1
T. M
Pu(°)=z(l) R (p2k)

Similarly, the normal forces acting on the rigid stiffener at x=a must

be self-equilibrating, i.e.

b
P3(a) + P (a) +f N (a,y) ay = T,
0

> T b

P(a) "b+ [ yN (ay) dy=—+M

4 x 7 2 2
0
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By substituting

N
N (a,y) = Z B! sin ()
n=1

and solving for P3(a) and P#(a), one obtains

S b L, M,
Pj(a)=-ZEBn+'—2-—6 @15)
n=1
N M
P (a) = Z (-0)" :’m B! + 2 4 —% (D16)
n=1

Thus, through (Di3) - (D16), the unknowns P3(O), Ph(O), P3(a) and Ph(a)

have been expressed in terms of the knowns T., M T2 and M..

IR 2

Separating Bl'ﬁ1 and Bll Terms in R:;’ R:z R'", R""
Equations (D13), (D1k), (D15), (D16), and (B69) can be used to
eliminate PB(O), Ph(O), PB(a), Pu(a), and X from equations (B68). If
the BI{1 and B; terms are then written separately from the rest,

equations (B68) become

R' = 8(5) + y'B' - 7,va||
n n nn nn

Rll
n

(6) - Hot gt
Sn 7an * 7n Bn
(p17)

N N
R'™ = 8(7) + Z B'H _Z (_l)m B"H
m m n mn n mn
n=1 n=1

m

N N
R" = SISIB) _ Z ('l)nBr'len + Z(—l)m+n Bg Hon
n=1

n=1
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where S§5), S§6), Sé7), SéB) are completely known quantities defined as

follows:
sr(15)=<;,,‘[-1+—[P(o)-(1)1>(b)J+All < T ZS(E)
m=1 " (p18)
5(6) - —qr + 2lr,(0)- (1), (b)] + A8, B o + Z< DR

m=1 (D19)

(7) _ X0 & roan " mst 'Xl] '
s, =t (B -B)+A a(C5Bm+Tm)

bmx\ m 373
N
M T 2M
@, 2 mle
E: Smn T a ab ( A a ab) (D20)
(8) _ _Aann _ 8 roan 1 mx " nn
Sm T %y bmﬂ(Bm - By ) + AyEy, a (C Bn * Th )

2 n_(2) T, M m 2 2
+ Z('l) Smn = 0 (-1) [_a + ﬁ] (D21)

with
s2) _ L mnn” - 2(mt ’ c.(B:"- (-1)™ B""]) (D22)
mn = E ab b a 2" m m
mn
Hmn’ 7', and 7' have been defined already in appendix C; 7‘” are also
known quantities and are defined by the following equation:
M
v"__b__+A _“.C+ _l___ K)BC
n T ann b E a‘'b 1
m=1
(D23)
Revision of Equations (B62) to (B65)
Substituting equations (D17) into equations (B62) to (B65), one
obtains
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oo N &1
nn
- 5% Z E

mn

at alt — (5) tRY o ofipt
cnql(n)-cnﬁl(n)—sn +7an 7n.Bn

m=1 _
(n=1,2,3,...,N) (D2k)

_( l)n "
-C Bl(n) + C"a (n) r(16) "B' + 7,.an_'_b (nﬂ Z( l)m gm E

m=1 m
(n=1,2,3...,N) (D25)
N N N
_ c'=(-1) s
gn'la3(m) gmB (m) = ) + ZBr'len-Z(-l)mB;len - 2 Z —————n a
n= n=1 n=1
(m=l, 2,3, :M) (D26)

N
-2, (el (m) = s{8- Z( D%+ Y (LT R

n=1

N - m-
2 =(-1)"cp
+ i(m—z) Z(-l)n ci-;E—n (m=1,2,3,...,M)

_ mn
n=1 (p27)

Equations (D24) to (D27) can be used to obtain a system of
simultaneous equations in which cn, e n’ gm, gé are the only unknown
coefficients, by eliminating BA and B; with the aid of equations (D9).

The resulting system of simultaneous equations is:

M
) - angl@) L ST W e (2,

m=1 (D28)

M
'Er'x¢r(13) * Eﬁ¢r(lh) = Cr(lz) 'Z Elffl)[ér}, - -1 '] (p=1,2,...,N)
= (D29)
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M N
H

L & g,y B2 “f,n[7r(12) (CLPHD™ - o (-1 P) 1) -Z g

1 n=1

N

N
+ZEI'IPH(3)-Z E;rg)

n=1 n=1l

_5(7) Z _mn [,(2)5(2) fll)sfll)'('l)m%(ll)a(e)*( ~1) 7(2) (1)]

(m=l:2) L 'JM) (D3O)
VE I M $L H /-
- ot \2) A\ n - mn \ jo) \_L} m+p
2 & Tup't ), &m0y, B, [y J(-1)Pe(-1)™)- 71 (2 (-1)™P) )
p=1 p=l n=1

Z (- l) (3) Z( l)n " ("")

N
H
=S§18)-Z(-l)n __gg Ur(le)sr(lz) (1) (1)_,( 1)Ry (1) (2 +('1)m7r(12)5r(11)]

n=1
(m=1,2,...,M) (D31)

where ¢r(1l) through ¢I(JL‘), gr(ll) (2) g(l) g(e), 5112)) g), and 1‘(”)

defined by the following equatlons

M
9 = @y - Sk “HZ( D+ 32 LarD-rr By

M
¢(2) B (n) + —n[7 7(1) 7"7(2)12(-1)mvl;m - & [7 7(2) 7"7(1)

mn
m=0

(D32)
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¢I(13) = Bl(n) _[711 (2) |n (l)]Z( l) V! + _[7117(1) 7|n (2)]2

m=0
M
¢(1+) = a,(n) + & [7..7(1) 7"y (2)]2( 1) - [7..7(2) 7y (1)12 v
m=0 m=0
(1) 5(2) (p32)
gr(11)= 31(15) =2 7(1) 7..,(2), 2 7;2) 7,.7(1)]
n
(2)_ 5(6) . o @) (2) 5<2) @) (1)
4y S AR A A e el FAV AR AR AR
n
(D33)
1 (2) |7(l) 1 " (l) " (2) 2
() - g e e Ty e, T e gy L
n n n n mrt
" (2) 11 (l) 1" (l) 1" (2)
7.7 ! ! 2
géi) = (- l)m n g mn _ "n 7D mn (- l)m " ;n mn + 7 ; mn _ g(g%) Qél)m
n n n n mn
(D3k)

1)op, (e, Z( L nDﬁ o ORI - 1) [ ()™

M
2
I‘(B) ) E(M) 1 (2) Z [(- l)P_,_( l) ] v' _ r(ll) Z [l+(-l)m+P] Vl'm}
p=0 p=0

M
H
s (7§2)Z[1+(-1)m+1’]v (l)Z[( P (-1 ve )
n =0
(D35

Some uncoupling of unknowns in equations (D30) and (D31) can be
effected by adding and subtracting these two equations corresponding to

the same value of m. By adding, one obtains
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5; T%n(ne) = pn;{l)
le: -’)
{m:l,e, M) (D36)
By ubtract hg, One obtams
ZM’ ( ) M N N
ot 3 - ot (4‘) ot (1) ' (e) (2)
g Gm Z 8.8 "/, c ~ c" = p
D D np
p=] ) ng;;,. »h n:EZ,;.L,.. who i
(me3, o 2 (D37) -
Whepe
(1) s
S ey (m) By (m) s L;eZ by {7n(3)[(-1)p+(~1)’"1 - ;;fl [1+(-1)””p1
n::lls) 3
9(‘?)‘ (2 (m) ) Hmn oy (2) el m (1) m
= ( (, B, (m) &up=2 = on 7] [(-1) *(~1) J~7n [1+(~1) P
. n
1,3, . (n38)
{1) - _{#(Imr)g 1 (?Hﬂm (2) X b m (1) ! nr+
= P A e %f(*l) U W) Ly on
. =0
M M
(2)* m 4 1 2K 2
i =(-2)m 4 %) G B0 )Z[1+(~J_)’“*P “on = (1) Z[(-z)% Vi
b=Q b=
" (D39
e(j) .._(' ( )+ ] Hmn . ( ) R m (l) -
IRCIOPYS mp2 )" Ty R OISTENGS By ey
nz-{-?,zl-..p
em(;‘) (o, (m)+52(m)}
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pI511) _ (7)+S *22 . [,(2) (2) (1) (1) (-1) 7(1) (2)+( 1) ,( 2) (1)]
n=1,3..

N ' .
. |
(2) _ 5N 5(B) %" mn ,(2)5(2) ;1510 (_qym, (1)5(2), (_yymy(2) (1),

n=2,4.%.
(Dh1)

Equation (D36) involves only the odd-subscript c' and c!, and equation
i1 Il
§D57) only the even-subscript c and CH- These equations may replace

equations (D30) and (D31).

Reduction in the Number of Simultaneous Equations

Equations (D28) and (D29), written for the same value of n, can be

solved for ¢' and ¢" in terms of all the ém and é&. The result is
n n

a7 65 p e Py }" g (D-g(20 2y @ o () gy

p=1
(Dh2)

5; - l (1)¢(5 +€(2)¢(l) E:(¢(5 ¢(l (2 )Lg -(-1) Pgn
oy
p=t <D45
N (1) (%) (2
where @) = ¢~ )¢; )-¢§ )¢£5)
Utilizing equations (D42) and (D43) to eliminate the EA and E; in
equations (D36) and (D37) and combining like terms, oné can obtain two

sets of simultaneous equations involving only the gé and gé as unknowns:

N N
Z & Cup Z o B Y Vi Y

n=1,3. p=1 n=1, 3.. n=1,3...

(m=1,2,...,M) (Dk9) .
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B

M
Y a6 Z v Zg.,{e(u) Z voye o Z v
o1

n=2,4.. n=2,4,. n=2,k4..

(m=1,2,...,M) (Dk9)

where (

(2)
Vo - “mn (#{e (1)-g 2 @) . "mn(¢(5) S ¢(1)§(2))

(D50)

(1) (2)
g = (g, @)@y T (10403) , ((2)4(1),
mn o' n "n n “n ¢ﬁ n “n n "n
(D51)
Whereas the original simultaneous equations system, equations (D28)
to (D31), requires the solution of 2N+2M simultaneous equations, the
reduced system, equations (Dh9), contains only 2M simultaneous equations.

Thus N may be taken arbitrarily large without increasing the number of

simultaneous equations that have to be solved.

Procedure for Use of Equations

The procedure for using the foregoing analysis will now be
summarized: Equations (D49) are first solved for the éﬁ and ég. With
these known, equations (D42) and (D43) give directly the Eﬁ and E;,
and equations (D9) the B! and B;. Equations (B60) then give the s
s;, sé", sg", and equations (B57) to (B59) and (B61) the Jpn+ Finally,

equations (B16) and (B19) to (B25) give the stiffener and plate stresses.

Special Case: Symmetry About x = a/2 and y = b/2

When the structure and loading are symmetrical about both centerlines

x = a/2 and y = b/2, then Al = A, A3 = A, Pl(O) = Pl(b) = P2(O) = Pe(b),

121



P(0) = Pz(a) = P (0) = P (a); as(x) = -q(x), a;{¥) = -a5(y), ey (¥) =

ee(y), ej(x) = eh(x), v = -V;, K = -K;. In this case, one may set

Bﬁ = B; =0 for n even \

Eﬁ = E; =0 for n even

- n

gé = gm =0 for m even

) (D52)

Bﬁ = B; for n odd

EA = Eg for n odd

o on

gm =8, for m odd )

We can simplify the simultaneous equations (D49) as follows. From

equations (D5) and (D52), one obtains

ﬁ_[s( )"22_ " gr;l+2(z ve ) @) (D53)

m=1,3.. m=1,3..
(n"-'l: 350 :N)

Equations (D24) to {D27) are replaced by

nnn

M 1
Sl (e (] = s mior) - £ (3D ) g osh)

(n=1,3,...,N)

N N -
2 c!
S RERRINP S ST b S
n=1,3,... n=1,3...

(m=l; 35 ->sM)

Substituting from (D53) into (D5k4), one obtains

122



M
c! = %— (e, + 2: éé gpn] (n=1,3,...,N) (D56)

n p=1,3...
where (
. 2 7| - 7")
B = oy (n) - B.(0) - =57 2. Vam (p56a)
T T me1, 3.,
(1)
Cy = S,(f) (- ) 1) 2) (D56b)
n 7n
2(7 - 7") 2
_T__—7_ — % =) E;; (D56¢c)

Substituting from equations (D53) and (D56) into equations (D55), one

obtains
M N £ N l N ¢
ot ' 1 a" - (7) n
Z gp(@mp+z n mn} Sm +Z Hn Z () Z 5;
p=1,3... n=1,3.. n=l,5... n "n n=1,3..
(p odd) (n odd)
(m':l: 3,0 0,M) (D57)
where
H
Opp = [os(m)=By(m)Ip - b z 7—(_ oo (P5T8)
n=1,3..
M
hH
o _ 4 omx 2 .
=2 D) E (1) BT L i (57e)
"n p=1,5...

The number of equations in the system (D57) is (M+l)/2, regardless
of the value selected for N.

Equations (D57) can be solved simultaneously for éﬁ (p odd). With
éé's as known, equations (D56) and (D53) will give EA and Bﬁ directly

(n odd). With these known, equations (B6O) will furnish the values of
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s} sg, s&", s;", and equations (B57) to (B59) and (B6l) the values of
Jpn+ Equations (B16) and (B19) to (B25) give the stiffener and plate

stresses.

Limiting Cases of Large Stiffener Areas

Five different sets of limiting conditions will now be considered,
all for the case in which the structure and loading are symmetrical
about the lines x = a/2 and y = b/2. In terms of the notations defined
by equations (C80), these limiting conditions are: (1) ké—*-o, A finite;
(2) Ag—-0, followed by M\, —>=0; (3) A—=0, X, finite; () A0,

followed by A—0; (5) kl = N, = N, followed by A—=0. The reduction

2 2
of the general equations to these limiting cases results in considerable
simplification; in particular it is no longer necessary to solve simultaneous
equations, except for condition (3). Conditions (2), (4) and (5) which

are physically identical also turn out to be mathematically identical.

The details of the reduction follow.

Condition (1): A.—0 while xl maintains a finite value. - Use

equations (D53) to eliminate the B) in equations (D55); and then divide

equations (D55) by A3E3, and rearrange them to obtain
Mo v AR o
Z e * 25 “EE Z Vm ALE (m=1,3...,M)
33 33 s 573
p=1,3... 1o (D58)
where
N 5 N b
. EZ {nn/b)< | n
Voo = Swpls L TES R ) Ey it (98
mn _ AN/
n=1,3... n=1,3... n n
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z! - (7) ‘o z l)n

n=1,5... n

(D580b)

2
V" Z yt - .!i ML (D58c)
f Z pn a
"n r=1,3..
Substituting from equation (D56) into equation (D58) to eliminate Eﬂ,
and then examining the coefficients of the unknown é& in equation (D58),

it is observed that some of these coefficients are of the order of 1,

while the others are of the order of l/(a E Retaining only

1t ) 5)

terms of the order of 1 in these coefficients, one reduces equations

(D58) to the following system:

Z" N g
& = iE* Z Vin AE (m=1,5,...,M)
5 T n A3%
-1,3.

(D59)
Substituting from equation (D59) into egquation (D56), one obtains the

following equation for EA

M
EA:%—n[Qn+Z € on [AE AE 2_459__9_]}
p=1,3. .. 2¢=1, 3. (060)

(n=1,3,...,N)
Thus a solution (egs. (D59) and (D60O)) is obtained which gives the

unknowns é& and Eﬁ explicitly without the necessity of solving simultane-
ous equations. This solution is seen to be correct to terms of the first

‘in l/(a E With-Er'l and 'gm known, then equation (D533) furnishes

ll 1 l)
the values of BA, and the procedure for computing stresses is the same
as described earlier for the special case of symmetry about x = a/2,

= b/2.
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Condition (2): A0 with A

{D59) and (D60) can be used as a starting point for this case. It is

finite, followed by Xi—+-0. - Equations

first noted, from equations (D56a), (B67), (C22), and (C23) that

—n n
g, = AE (1 - =+ =] (D61)
11
where
M
—— 2 nx .
= = 3 1) 3 57 b C3 E: Vi (D61a)
n n m=1,3

@_ %Y (/) S 5 1S

1 m 2 ,nn .

a2y Amlal NG () & 201 Von)
m=1,3... o " ome1,3..™ p=1,3...

(D61b)

Substituting from equation (D61) into equations (D59) to eliminate ¢n’
examining the coefficients of the unknown éé in these equations, and

retaining only terms of the order of 1 in these coefficients, one reduces

equations (D59) to the following system:
{(m=1, 3 ..., M) (D62)
A similar reduction of equation (D60) can be effected with the aid of

the following form of gpn, obtained from equations (D56c), (C22), and

(c23):

_ nx : 2 1 A(2)
En = ME B S, oy T EE S (D63)
TAEPA 11

where
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y

M 3 >
al2) _ 4 [Z - e P WVE NN 7 - S
m - (1) (@) E a'b 1°"pn Db‘'b’ E
AR — mn pn
n n m=1,3...
(D63a)
Substituting from equations (D61) and (D63) into equation (D60), examining

the coefficients of the unknown Er'l, and retaining only terms of the order

of 1 in these coefficients, one reduces equation (D60) to the following

equation:

- Zy

°n=A_le (n=1, 3 ..., N) (D64 )
where

M
A E
, 1 11 nx 2 ' 1"
y = cp(l) Loy * AsBs b % (1)_. (@) Z M 2l (DSha)
n 7n 7n m=1,3-'-
with
(1) _ 1 _ =n
ot =1 = (D6lb)

Equations (D62) and (D64) are the pertinent results for this limiting

condition.

Condition (3): Kl—-*O while A_ maintains a finite value. - This limit-
o

ing case (AlEl and A2E2 approaching infinity) can be studied with equations
{D57) as the starting point. These equations are written in the following
form, in order to be more readily suitable for solution by the Gauss-Seidel

iteration method:

N o n N 2,5(1) N
) y mn _ T n _ N an
%n[emm * Z 5— ean - Sm * Z Hmn .l)_7 2) Z 5; mn
n=1,%..% n=1,3... m 'n  n=1,3.."
M N H N ¢
] mn v I "
* Z gp[14L Z 1)__(2 l”)'pn Z 5:1_ emn]
p=1,3... n=l,5..7n "n n=1,3...
p # m)
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Substituting from equations (D6l) and (D63) into (D65), then examining

1

the coefficients of the unknown ém in equations (D65), and retaining

only terms of the order of 1 in these coefficients as AlEl and AEEE

approach infinity, one reduces equations (D65) to the following

system:
N

_ (nn/b) 5 P e
grh{en'm““ez - (1 )

n=1,3... (1 - :n][7n B 7n ]

N (1) N on
(7) 2o ‘n_ ®mn
n=1,3... 7n 7n n=1,3.." n

(rm/b)c5 p'ooen

M
L B Z (1) 3 " e Z [1- —;][751%-722)]}

p=1,5.. n=1,5.. n=1,5..

(m=1, 3, ..., M) (D66)

The solution of equations (D66) can be effected by the Gauss-Seidel
iterative procedure (see appendix C - Procedure for numerical solution.).
Using equations (D53) to eliminate B! in equations (D54), and then

dividing equations (D54) by A E and rearranging terms, one obtains

171’
P, < o
ol - =n = — LD R
cp [1-3+ AlEl] AE, + 3 Cs (1) @) Z A E] En
n m=1, 3. m=1,3...
(D6T)
in which the 'ém are defined by equations (D66). As N0 (AlEl——>oo),

equations (D67) are simplified to the following:
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M
(- an 2 t St
n T 0 K E; % % L1, @) Z Mon &gl
n n m=1,3... (D68)

where ‘I’z(ll) is defined by equation (D64Db)

With éﬁ and EA known, through equations (D66) and (D68), equations
(D53) will give the values of BA. From that point on, the procedure for
computing stresses is the same as described earlier for the special case

of symmetry about x = a/2 and y = b/2.

Condition (4): ki—%PO with A, finite, followed by A—0. - Dividing
(=4 (-4

equations (D66) by A and examining the coefficients of the unknowns

53

ém, it is observed that these coefficients contain terms of the order of

1 and terms of the order of l/(a3E Retaining only the terms of

llABEB)'

the order of 1, one reduces these equations to the following system:

m = ALEL (D69)

where Z; is defined by equation (D58b). Substituting from equation {(D69)

into equation (D68), one obtains

C

7t
R
n” AE (D70)
where Z: is defined by equation (D6ha).

With éﬁ and Eﬁ known from equations (D69) and (D70), equation (DSB)
will then furnish the values of Bﬁ. The subsequent procedure for comput-

ing stresses 1s the same as described earlier for the special case of

symmetry about x = a/2 and y = b/2.
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Condition (5): Al = Ag = A, A—>0. - This case can be thought of

as one in which all stiffener cross-sectional areas are approaching -

infinity simultaneously while maintaining fixed ratios with respect to
each other. For the study of this case we return to equations (D54)
and (D55), but rewritten as equations (D67) and {D58), respectively.
Examining the coefficients of EI‘I and -g&l in equations (D67) and (D58),
it is observed that some of these coefficients are of the order of 1,

while the others are of the order of l/(aBE Retaining only

lIAlEl)'
terms of the order of 1 in these coefficients, one reduces equation

(D6T) and (D58) to the following system:

¢ M
- _ 1L _n , ax 2 v T
°n T o) [AlEl * % C3 J1_@) Z B p) (p71)
n n n m=l,>3...
- zZ
gl =1 (D72)
m A3E3

Using equation (D72) to simplify equation (D7l), the latter becomes

Z'

n
| o= e (DT3)
n AlEl

C

where Z' is defined by equation (D6ha).
Thus a solution (egs. (D72) and (D73)) is obtained which gives the
basic unknowns Eﬁ and é& explicitly without the necessity of solving

simultaneous equations. This solution is seen to be identical to those

obtained for conditions (2) and (4).
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Tllustrative Thermal-Stress Problem

A particular example will be presented to illustrate the details
involved in the application of the foregoing analytical results, this
example has the followiﬁg characteristics:

a) Two opposite edges of x = O and x = a kept straight; therefore
the K and K; in equations (8) and (9) are all zero.

b) Plate isotropic; therefore elastic constants are given by
equations (3).

¢) Plate and stiffeners have the same Young's modulus E.

d) Al = A2, A3 = Ah'

e) No force loading.

f) Stiffener temperature constant at the value To'

g) Plate temperatures T(x,y) symmetrical about both centerlines
(x = a/2, y = b/2) and varying sinusoidally in accordance with the
following equation

(o

IA
»
A

Prx Qr a)
T(x,y) = T + © sin (=2) sin (=X
O a b (o

IA
<
IA

b)
where P and Q are odd integers.

h) Plate and stiffeners have the same coefficient of expansion Q.
These are the only specializations to be employed at present. However,
in the numerical example, to be presented later, the problem will be
further specialized to the case of a square plate (b=a) with all stiffeners

identical (Al = A, = A3 = Ay = A), subjected to a "pillow-shaped" temper-

‘ature distribution (P=@=1), and having v = 0.3.

Reduction of general equations to special case. - From the given

temperature distribution, one obtains the following equations for the
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known coefficients in terms of temperature distribution and the

coefficients of expansion d (see appendix C):

T =TIy =T = T =0 (D74)
14 2 2 2.2
%n=wﬁ%qw(? [P= + Q°B°] @ﬁ)
V' o= V" = o0 X 5 (D76)
n n a nQ

Due to the absence of prescribed forces, the following quantities are

all zero:
Pl(O)) Pl(b): P2(O)} P2(b) (fig- )"'b)
Ty, My, T, M, (fig. 4b)
B " B " (see eqs. (%))

Q) Q;, Qﬁ", Qg" | (see egs. (6))

(It should be noted that P,(0), P,(a), P, (0), P, (a), B' and B" do not
3 3 L L n n
necessarily vanish.)

Because in this example the structure and loading are symmetrical
about both centerlines, x = a/2 and y = b/2, the simplified system of
equations, namely equations (D56) and (D57) will be used for the
determination of the Eﬁ and é& with odd m and n. (It should be noted

T o -|=_N _|=-H=
that cp = ¢, for n odd, gy g, for m odd, cp cy 0 for n even,
and éﬁ = é; = 0 for m even). With EA and g' known, equation (D53)

m
will furnish the wvalues of odd subscripted BA. (It should be noted
that Bﬂ = B; for n odd, and BA = B; = 0 for n even). Equations (D57)

must first be solved simultaneously for ém. The quantities needed in
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order to use these equations will now be evaluated. Substituting from

equations(3) and (C81) into equation (DE), one obtains

M ir.2 2.2
(-1)7[i® + (2+v)n“B°](2-5. .)
7(2) - (n2B2/aEh) Z _ io
a : 2, 2272
i=0 [i® + n®B°] (06")
From equations (C10') and (D6'), one obtains
1 aEh
"n £ 422 Z [m° + (2¢v) n°B°)
s [m2 + n232]2

Substituting equations (3), (C81), (D75) and (D76) into equation (p7),
one obtains

2 2.2
Po [P+ (2+v)Q7B7] .y 4 (07')

(1)
o) = 9
n a [P2 . Q?B2] nQ

Substituting into equations (D18) and (D20) from equations (DT4) and

(D75), one obtains

(5) _ PGB :
5,7 = zan C©Eh 2 . Qng] (p18")
(7) ___PgB '

S = & _ 0PEh D20
m mP [F° + Q2132] ( )

Substituting from equations (B67), (D77), (C22'), (C23') and (C13'),

into equation (D56a), one obtains
¢n = _A'lE an \D56 a)
where
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2
m
§5=1+)‘1 (22 + o282 2
m=1,3,.c0 0
M
2 2 1
[v+)‘1nBZ(2+ 223 M (n25? 2,
m=1,3.30 t o8B ) :E: inB - vm ]
MY , -2 [m® + n°B°]°
}: [m™+(2+v)n"B" ] m=1,3...
g [mz + n2g2 2 (D56"a)
=1,3...

Substituting from equations (D77), (D18'), (co2'), XC23') and (D7')

into equation (D56b), one obtains

§n = a©Eh gn 5nQ (D56'b)
where Zﬁ are known quantities defined as follows
M 2 2 2
Pl + 282 1 1 (LB (erv)eB™] o,
Kl (i2+Q?B2)2 [P2 + Q?Bg]
7 _ __PaB _ i=1,3.2
n 2 .22 M
SALLE (12 + (2+v) @787
B 2, 202
i=1,3 [i© + Q°B"]
- (D56nb)

Substituting from equations (C81), (ci2'), (c22'), (C23') and (DTT)

into equation (D56c), one obtains

§on = AEE (D56'c)

where £ n are known quantities as expressed by the following equations:
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M
e 2.2 2.2

Blp +(2+v) n“B ][v+xln B E - 2] . s
—_ i=1,3 _(1 + n B ) }\_l n°B
£ = — =1,3..} )
i M 2 2 2.2

(5% + n°8%)? Z [1%+(2+v)n°B%] (p° + n"B%)

’ [1%+n°B2]°

i=1,3..." (D56"c)

Substituting from equations (C82), (c24'), (C12') and (D77) into equation

(D5Ta), one obtains

N
2
L n
8' = AE {[1+ AB Z ] 8
mp 3 2 2 2.2.\2 mp
n=l,3..§m * ')
n° 1 2 2.2
N [2222-2h][p + (2+v) n"B7]
L (m“+n"B°) n’B '
-N\.B Z )} (D57'a)
° n=1,3 2 2. 2,2 i [12+(2+v)n2B2]
T2t (07 + B
[1%+n°B°1°

i=1,3...

Substituting from equations (C81), (C13'), (ca2k'), and (D77) into

equation (D57b), one obtains

o = A E gn
mn 1 mn

where 6;n are known gquantities and are defined as follows

n3B3 _ ;_]
2B2)2 nB

2 AL
Bn Mm L (m2+n

mn T 2, 2n22

.2, 2,242
+
i=1,5... [1%n"B"]

135

M
B Z [i2+(2+v)n232] i=1,3...

(D57'p)
M
}: [n2B2 - vi2]
[i2+n2B2]2
(D57"p)



Substituting from equations (C24'), (D7'), (DT7), (D20'), (D56'a), (D56'b),
(D56'c), (D57'a), and (D57'b) into equation (D57), and substituting

g'=g'C Rg, one obtains

P p 1
N - N
E 2
{ _Ln_ne;;]n+[l+>\2th 2 n222]c
n=l,5..§n n=1,3... (m *nB7)
N (=7 - ; h][mz + (2+v) n°B°)
_)\2th Z (m“+n"B7) n“B } (m)

M
n=1,3... ( 2, 22,2 Z [° + (2+an2B2]

m~+n"B")
.2 2,22
ie1,3.,. E Bl
=5 i T - Zhl 5 n "
il . @ g [Prew)e®®]
R Gt S G
hm M

Z [i2 + (2+v) @7B°)

2. 220
i=1,3... 1+ QP

2
M N [ 555 - 5l )ns?)
_Z [z {—PE'@"-?\BAC (m“+n“B7) n B 1] -
a mn 2 M 5 5 o
p=1,3... n=1,3... n 2 2_2,2 [1%+(2+v)n"B°]
’ [p™ + n"B%) 2 220
i=1,3 (1i“+n“B“]
. - b '
(1-2,) e (D57")
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v

where
1

g
= —BP_ -
¢(p) = Zm and C= A5/Al

In the solution of this system of equations the Gauss-Seidel
iterative procedure can be employed (see appendix C - Procedure for
numerical solution).

After equations (D57') have Been solved, the G(p) (therefore gﬁ)
will be known. The ¢, can then be determined from equation (D56).
Substituting from equations (D56'a), (D56'b) and (D56'c) into equation

(D56), and substituting Eﬁ =c' C E%, one obtains

n 2
M
PN
1 1 -
cln) = —1—TF 5+ RORY: (p56")
Q pn
455 nB aﬁ nB p=13...
where
°n
¢(a) = 5m

With C(n) and G(m) known, substituting from equations (D77),
(D7'), (c12'), and (C13') into equation (D53), and substituting

t n ! = ! myt s
¢, = ¢n 02 S and &n = &n Cl 5 one obtains

M
Z ml m+ (o+v )n232J '

2 2 2
Pn[[P +é2+;)§ 2l - 1) [m2+n2B2]2 o)
B(n) = - [ﬁ +Q B ] .0 * m=;iﬁ...
sy Blrer)aE) 2y [12+ (2+v)n°8°]
2 . 2202
i=l,5...[i2+Q?B2]2 o1, 3., LT 0BT
M
2 o R SRS
i + n2n2 ]
m=1 3..? n'B ,
v (D53')
Z [1%+(2+v) n°B°]
i=1,3... (1% + ¢°8°1
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where
B 1
n
OEh

B(n) =
With BI; as known, one obtains

N
PB(O) = p,(0) = -G8 EN, Z L‘—n B(n) (D78)
n=1,3...
from equations (D13) and (D1k).
With C¢(n), G(m) and B(n) now known, equations (B6O) will give the
values of the odd-subsc.ripted s)> s;'l, SI;l"’ 5;1'1"’ and equation (B61) the

values of j . (m and n odd). Equations (B16) and (B19) to (B25) will

give the stiffeners and plate stresses. One thus obtains the following

results:
N
P.(y) = By(y) = eA B z (¢(n) - vB(n)] sin (E{-:X)
n=1,3...
(0 <y <) (D79)
M
PB(x) = Ph(x) = eA3m z G(m) sin ('—‘E—Z-’i (0 < x<a)
m=1,3... (D80)
M N
N, = aeEh Z Z G(m,n) sin (%) sin (E%TX)
m=1,3... n=1,3...
(0 <x<a)
(O <y< b) (D8l)
M
(Nx)y=o = (Nx)y=b = aOEh Z G(m) sin (m—;‘5 (0 < x<a)
m=1,3... (D82)
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M N
Ny = 0OFh Z C(m,n) sin (Ena—x) sin (EEI)
m:l,}-.- n=l,3---
(0 < x < a)
(o < y < b) (D83)
N
o= Oy oo 3 o) sin B (0 <y <)
n=l, 3. e (D8)+)
M N
N, = -OSEh Z Z J(m,n) cos (Fg7) cos (FX)
m=1,5.-- n=l,3---
(0<x<a)
(0 <y <o) (085)

where G(m,n), C(m,n), and J(m,n) are known quantities, and are defined

by the following equations:

l:-neB2 2
G(myn) = ———=——= [m ¢(n) + nB“G(m)]
ﬁ[m2+n2B2]2
2 2.2 2.2
. o T gBén) - ®upPng (p86)
n{m® + n“B<] (P + Q°B7)
2, 2 2.2 . 2
C(m,n) = thén) = (mz . 22 123 % -1l - 2P 55, %mPng
n“Bxn (m~ + n“B<) (P7+Q°B)
+ L [m c(n) + nB® G(m) ] (p87)
x[m2+n2B2]2
J(m,n) = —g—n!%—g—é {neBgB(n) - o C(n) - mnB® G(m)}
n[m=+n“B"]
+ L (D88)

(P2+Q?B2) 8mPSnQ
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And from the first two of equation (4), one obtains the following
running tensions between the rigid stiffeners and plate edges at

X =0 and x = a.

N N
_ _ Vosin (W) _ Z i (BT
Nx(o,y) = Nk(a,y) = 2: B sin ( o ) = 0®Eh B(n) sin ( 5 )
n=1,3... n=1,3...
(0 <y <n) (p89)
Numerical results for hl and A, £ O. - The numerical procedure

and equations described above were applied to the special case of a

square plate (b=a), will all stiffeners identical (Al = A2 =A_ = Ah)’

3

and Poisson's ratio v equal to 0.3. The above assumption implies B = 1

and hl = x2,

both kl and Kg.

The results obtained for the stiffener tensions and the plate

and the common symbol A will therefore be used for

stresses are presented in dimensionless form in figure 10 for N = 2.0
and figure 11 for M = 1,0. The values of M and N employed in the
calculation are indicated on the figures. 1In general, stresses are

computed at x/a and y/a interval of 0.l.

Limiting case of large stiffener areas, condition (1). - Five

different limiting conditions were considered in the earlier analysis.

However numerical calculations were made for only two of these, conditions

(1) and (2). The equations needed for condition (1) will now be presented.
Substituting from equations (D7'), (D20'), (D77) and (C24') into

(D58b), one obtains
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® L [P (ern)PR?) |

[ - P
" PQB . _ (m+d®8%)% 87 [F° + ¢%82)
Z' = aBEh —0 -
m (P2+ 2B2) mP M > 5 o
Q Z (i€ + (2+v) Q“B“]
(12 + ¢%21°

i=l,3--. (D58'b)

Substituting from equations (C13'), (c24'), (C81) and (D77) into (D58e),

one obtains the following equations for V;n:

M

Y Lererll
V;Qn='hagh[[2n2322' ;2]R=l§43"gp+nB] * 2m2222}
7 (m“+n“B“) n“B ji: [p2+(2+v)n2B2] [m“+n“B<]
p=13... [p2 * n2B2]2
(D58'c)

Then substituting fromequations (D58'b), (D58'c), (D56'a)and (D56'b) into

(D59), one obtains
ot
™

- o %; G(m) (D59")

where the E(m) are completely defined by the following equation:

[—GB It ][[P2+(2+V)Q2B2] - 1P
2,222 373 > 272
Gm) = —FB ¢ _ _(m™+g°B%) QB [P” + Q7B7]
(PP+q7B%) P Moo 2 2 2.
Z [i% + (2+v) Q"B%]
15 [124e78212
M
. 252 1 el [p°+a78212 2 , EQ
) ; 3., N )
W2 222 2 M 2 222
(m“+Q“B<) o%B z: [p2+ (21 )a%62] (m“+Q~B<} 5Q
o2 + o222
p=1,3... ‘P " Q (Dsgr
(D59'a)
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with 6Q and EQ are defined by equations (D56"a) and (D56"b).
With éi as known, substituting from equations (D59'), (DS6‘'a),

(D56'b) and (D56'c) into equation (D56), one obtains

- M
g
-, _ E_ °n ; E_ 'l_ = g "
c) =00 .7 5nQ+ozeA 3 Z G(m) € n (D56")
n 5 nm=1,3%

Substituting from equations (D59'), (D56"), (D7'), (D7T7), (Cl2') and (C13')

into (D53), one then obtains

[ T = T n
B' = OQEh?\-lEQ—B-nﬁnQ+a9Eh7~2HB§ (D53")
where
M
22 2
2 2 2 = [QB” - vm7]
= [F° + ¢°B%) , m=l3,. .0 Q
n M M
) [ orv)gs®) 5 Y [ate(er)qsY)
1 (2 + Q282] n (2 + 252]
m=1,3... B *Q m=1,3... ‘% *Q
(D53"a)
M o o o M M
B Z [m™+(2+v )n“B“1G(m) [ Z G(p)E_ ] Z [n2B2-vm2]
[m*+n°B2 ]2 pn 2 2202
B¥ m=1,3... _ _p=1,3... m=1,3..lm™n"B7]
n M M
E: [m? + (2+v)n2B2] a }: [n? + (2+v) neBQ]
m=1,3... [u® + n°B%)° 2:1,5... [ + n%8%)?
(D53"b)

With ¢', g', and B! known through equations (D56"), (D59'), and
n’ Sm n 4
(D53"), the Fourier coefficients of the stresses can now be evaluated.

From equations (B60), one obtains
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¢
[ | B k1S n Rt
s) = s, = GOA|E N BnQ ) [(— + VBn] (Do)
n
S'" = S"" = QPA_E 'y Bx a‘(m)
m m 3~ "2 I

From equation (B6l), with Eﬂ, éé, and B! as known, one obtains

S = QOB & 0 3o (D91)
(mf0)
(n#0)
where
2 - 2_2=,
3 - .__PQ;'_L_.___ 5 - ___i)\l____ C_n - .ﬁ‘.Q;B__Bn_ (D90a)

With Eﬂ, g,> and B as known, from equations (B34) and (B35), one

obtains -
gmn = an GoEh gmn
- (D91)
c =5 aoEh cmn
mn ng
where
Q?Bza ABmQ, € A m[m2+2Q?Be]§'
émn =T 72 2mg * ; 2 212 B > 2 22 (D91a)
(F7+Q7B%)  [m+Q7B" 1" § (m® + Q°B%]
: = flf. [1 - EEXEEiEQEEEl] - % __ P
mn Q5B5 (m2+Q2B2)2 mP (P2 + Q,2B2)
Aomo t
* 2 - 527 o (p91v)
QB[m® + QB] a

n

Now with ¢', g', B', s', s'", ¢ and J known, equations
n’ &’ °n’ %’ ®m’ Sm’ Emn’ Jmn » €4

(B16) and {B19) to (B25) will give the following stiffener and plate

stress equations:
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N —_—
g _
Pl(Y) = By(y) = o®A BN Z 8. E%E 2+ vB!] sin _(%‘1) (0 < y<hb)

1
n= ’3... n (D92)
M
P3(x) = Ph(x) = aGAjE >~2 Z % G(m) sin (E'i:—x) (0 < x< a)
m=1, 3. (93)
(0 < x<a)

(Do)
M
(n )y-O = (Nx)y—b = OOEh k2 ji: X Gm) cin (EXy _ o (0 < x < a)
m=1, 3.
(D95)
M N
(0 < x<a)
N_ = aSEh 5 o sin (5ZX) (=)
Y m=]§.. n=§5. nQ - b (O < ¥y < b)
(D96)
N )\ - E
1 n nsw
) = (), =08 ) By 135 S s GH o<y <)
n=ds 3 n (097)
M N
(0 < x < a)
N = -aOEh 5 3 cos (E_E) (22X o
~ m=]§:3.. n=§,:3. e k (0<y<b)
(D98)

Substituting from equation (D53") into equations (D13) to (D16) and

neglecting terms involving Kg, one obtains

2
Aot

P,(0) = P,(a) = P, (0) = P,(a) = QBAE A, §_,——— B

3 3 L 4 3 2an6Q2Bn

(D99)
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o

With B! = B; as known, from the first two equations (&), one obtains

hln _
= = - ' ai < <
N (0,¥) = N (a,y) = -a0Fn®, 175 B sin (9%1) (0 <y<hb)
(p100)
Numerical results for condition (1). - The numerical result for

Kl = 1, Xé—e—o for square plate (B=1) with all stiffeners identical,
subjected to a pillow-shaped temperature distribution (P=Q=1) is shown

in dimensionless form in figure 12 for Poisson's ratio v equals to 0.3.

Limiting case of large stiffener areas, condition (2). - In this

case, equations (D62), (D6L), and (D53) will be the governing equations.
The additional quantities needed in order to use these equations will
now be evaluated.

Substituting from equations (3), (Cl3'), and (D77) into equation

(D64b), and with aid of equation (D6la), one obtains
M

}: [n2B2 - vmg]

.[m2 + n2B2]2

AR R Bemds 3 (D6k o)
n 2 2 2
2: (m“ + (2+v) n"B°]
2 2,242
m=1, 3 [(m“ + n“B°]
Substituting from equation (D58'b) into (D62), one obtains
) h ' 6ot
=0 Kg G'(m) (pé2")
where
2.2
{[P +2(2+vg S,B 1. 1] p
¢'(m) = — 25 - [ - 51 (2" + g7
2 2 mP 2.2.2
(PT+Q°B“) (m~+Q°B%) QB Z [iz ¢ (2+v) Q2B2]

> 222
i=1,3... 7+ QB7]

(p62'a)
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Substituting from eguations (3), (ci2'), (D7'), (D18'), (077), (DS56'w),

(D58'b) and (D6L4'b) into equation (D6L), one obtains

(1)
2 ¢
U n, _n L 1 (2) '
¢y = "0 37 cI)(l) 6nQ, toe Al ;zi— °n (D6h )
n n
where VP {[P2 + (2+vg Q2B2] -1}
2 2
CIgl) _ - [ + Q°B"] (D64")
QB E: [m? + (2+v) Q?Bg]
I R
M
pp( [P F (2+0)a75%] 1] §: S
(2) PQB (7° + ¢°B%) m=1,3. .. [m"+q°B°J°
¢ ‘=lm 53" M J q
(P v a5 Yy (erv) o)
m=1,3... [mE * Q?Bg]g
- [m2 + (2+v) n2B2] ’ - [m2 + (2+v) n2B2]
+vB{ [2+2212G<m”/f°‘z 2 + 2B P J
m=1,3... m +nB m=1,3,.. @ +nB

D64 ")

With Eﬁ and éé (m,n odd) known, and substituting from equations
(p63'), (pé2'), (P7'), (D77), (C12') and (C13') into equations (D53),

there follows

2)

B! = @OEh B(l) & _ + aeEh A B( (D53'")

n nQ 1 ™n

where
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M
(1) [7B° - va?] > o o
n E: o2 + 2522 p[LE +£2+V)2QéB 1.9
B(1) _ g n ( m=1,i... [F° + Q°B°] }
n M
QB cD(1) E: [m?+(2+v)g?32] E: [m?+(2+v)Q?B2]
n 2 + QPeP P [m2+Pp2 12
w=1,3... B ¥ Q m=1,3... 09
(D53'"a)
M M
Bt [m2+(2+v)n2B2] ' (m) . c(2) E: [n2B2—vm2]
5(2) _ m=1,i.. mn ) m=i,3... mra
n
[m2 + (2+v) n2B2] (1) [m2+(2+v)n2B2]
knG Z [ + 2522 4nBo, Z (2 + 0282 2
m=l,%... & ° 0 m=1,3,...

(D53'"p)

With the basic quantities Eﬁ, é&, and B! known (equations (D64')
(D62'), and (D53'")), the additional quantities needed in order to deter-

mine the stresses will now be evaluated. Equation (B6&0), (B61), (B3L),

X "
s S,

and (B35) will give the values of the odd-subscripted sﬁ, s;, S

m m
jmn’ 8’ Cpn 25 follows:
(2)
' = s" = gBA_EA [F= o vB(2)] (D101)
Sh = S T 171 4n ®il) n
n
LI L i B_’_E ]
sy = sy = a.eABEA2 m C (m) (D102)
Jp = OOFh BnQ I n (D103)
(m#0)
(nf0)
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QeEh b . G _ ~ (D10k)

gmn = nQ mn
c n = @Eh an Con (D105)
where m‘gc(l) Y Q3E3 B(l)
I = g 5 5. Opp * . * 5
m 2. Pef) ™ peg2e?2 ol a[n? + PBRP
(D103a)
252 mQ cr(ll) Ltm[m2+2n2B2 ]Br(ll)
G = = e} - +
mn (P2+Q2B2) mP ‘Dr(ll)[mz + n2B2]2 JI[me N n2B2]2
(D10ka)
(1) 3,(1)
. Lm B, [mz@e + 2Q232) 1. m°C}
mn B QzBe (mz . Q2B2)2 Q232[m2 N Q2B2]2 (br(xl)
(D105a)
I A
(P2 . Q2B2) mP

Now with cﬁ, g&, Bﬁ, s', sé”, Con? Spny 4 Jp, known, equations

n

(B16), and (B19) to (B25) will give the following stiffener tensions and

the plate stresses:

N (2)
C
P.(y) = P,(y) = oA EA) _5_ = j_ﬁ - VBI(IZ)] sin (2
n=l’300- n

(0 <y <b) (DL06)

M
P,(x) = P, (x) = 0BAEN, Z E—:l G'(m) sin m%x) (0 < x < a)
' m=1,3...

(D107)
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M N
(0 <x<a)
N_ = 0®Eh Z z G, sin (E;—x) sin (_r%x) an,
m=1,3... n=1,3... (0 <y<b)
(p108)
M o .
(N )y = (W), = 0BER X, Z "—%@l sin (F2F) (0 <x < a)
m=1,3%... (D109)
M N
(0 <x<a)
N = aEh z Z c_, sin (’—‘{—"—) sin (n—gx) ®q |
Y m=1,3... n=1,3... (0 <y <b)
(D110)
N o(1)
= - - b3 n nxy
(Ny)x= (Ny)x=a ()9}3.'.|'1n=:|-z3 l;Q232 " 13 sin ( o )anQ
(0 <y <0n) (D111)
M N
0<x<a)
N , = -08Eh J_cos (T2X) cos (TX)
~ L2 s BT (o<y<h)

(Dl12)

With the B = B; known, eguations (D13) to (D16) yield the following
tensions at the ends of the x-wise stiffeners where they join the rigid
vertical stiffeners:

N (1)

JTBn
P,(0) = Py(a) = B,(0) = B(a) = 08A B, 5 a8
n::l,}...

(D113)

And from the first two of equations (4), one obtains the following running

tensions between the rigid stiffeners and the plate edges at x=0 and x=a:
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N
N (09) = N (ay) =oem ) 3 ain EHyo (0 <y<b)

n=1,3..."
’ ' (D11k)

Numerical results for condition (2). - The numerical result for

Xé—4>0 and xi—*-o for square plate (B = 1) with all stiffeners identical,
subjected to a "pillow-shaped" temperature (P = Q = 1) is shown in

dimensionless form in figure 13 for Poisson's ratio v equals to 0.3.

Illustrative Prescribed-Force Problem

As another illustration of the application of the general theory
of this appendix, the case will now be considered in which the stiffeners
at x = 0 and x = a are rigid and straight and the plate is stretched
by means of forces applied perpendicular to these stiffeners. The loading
in this case is that of figure 4b with T, =T,="T # O and all other
loads vanishing. As in the previous example, the plate is assumed to be
isotropic and to have the same Young's modulus as the stiffeners, while
the stiffeners are assumed to be symmetric about the plate centerlines

(that is A, = A, A, = A, ). The temperature is assumed to be uniform
2 3 L

1
and will therefore produce no stresses. Later on, for the sake of
numerical calculations, the problem will be further specialized to the

case of a square plate (b=a) with all stiffeners identical (Al = A.2 =

A3=Au=A).

Reduction of general equations to special case. - Due to the absence
of prescribed normal forces, shearing flows, and prescribed moments, the

following quantities are all zero:
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P,(0), P,(b), P,(0), B,(b) (fig. 4b)
M, M, (fig. 4a)
BA": B;" (see egs. (4))

Qo Qo s " (see eqs. (6))

(It should be noted that P_(0), P,(a), P, (0), P, (a), B' and B" do not
. 3 3 L L n n
necessarily vanish.) And due to absence of thermal loading, the

following quantities are also all zero:

T, T, T.M, T (see egs.(14))
Tn (see eq. (16))
v, v (see egs. (23))

Because in this example the structure and loading are symmetrical

about both centerlines (x = a/2 and y = b/2) it follows that Eﬁ = c.,
éﬁ = é&, and Bﬂ = B;, and the simplified system of equations, namely
equations (D53), (D56), and (D57), may be used for the determination of
[ o
the Bn, 0 and g
From the given loading conditions the quantities 6(1), defined by
n

equation (D7), 855), defined by equation (D18), and S£7), defined by

equation (D20), can be reduced to the following

8511) =0 (D?" )
555) =0 (p18")
(1) _ et "
sm = = M=1, 3 ..., M) (p20")
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Substituting from equation (D7"), (D18"), (c22'), (C23') and (DT1) into
equation (D56b), one obtains

¢y =0 (p56'"b)
Equations (D57), which define the quantities é&, can be reduced to the

following form if use is made of equations (C2k'), (DT7"), (D71), (D20"),

(D56'a), (D56'b), (D56'c), (D57'a), and (DST'"b):

N E N 5
= n
(Z ——@ + [1+ 2B Z (m2+n2B2)2]
n=1,3.. n=1,3
N [ n° - 2 J[m® + (2+v)n°B?]
2 22,2 2_k
i (m~ + n"BY) n"B
-AB i } G(m)
nel,3... (2, 2,22 Z [iZ + (2+v)n°B°]
3=1,3... [i2 + n2B2]2
n 1 2 2.2
M N = - Hm™+ (2+v)n"B
3 2 22,2 2_L
=-g—_ Z Z E_BE-@_) _}\'B)'I- (m+nB
Jm Cﬁ mn 2 M 5 5 o
p=1,3... n=1,3... 'n ( +n2B2)2 Z [i™+(2+v)n"B7]
(1240282 P
i=1,3... LB
(L-8% )p .
‘——mm—ll—G\p) (m=1,3...,M) (D57(1))
where
g A
-k >

With é& known from the solution of the above equations, the EA can be

determined from equation (D56). If use is made of equations (D56'a),
(p56'c), (D56'"b), and (B66), then equation (D56) can be put in the

following form:
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C(n) = —d z mgmn G(m) (n=1, 3 ceey M)
n BC
n m=1,3
(D56(1))
where cI'lAl
¢(n) = -

With the Eﬁ and éé known, equations (D53), (D7T), (D7'), (Cci12'), (ci3'),

and (B66) lead to the following expression for the determination of

B':
n
M M
y m[m >+ (2+v)n°B ] y [n°B° - vu©]
2 5 5.5 Cm) ¢(n) 2 5 2.2
-1 [m~ + n™B%] [m= + n™B7]
B(n) = & 2De . - m=1,5. ..
M 2 2.2 M 2 2,2
C }: [m™+ (2+v)n“B] E: [m~ + (2+v) n"B7]
(2 + 2Bl ]2 (m2 + n2p2 2
m=1,3... m=1,3...
(n=1, 3 ..., N) (D53(1))
where
By
B(n) = 3

With the B} known, from equations (D13) and (DiL) one obtains the follow-
ing tensions at the ends of x-wise stiffeners where they join the rigid

vertical stiffeners:

>
’_J
EY

B(n)] (p115)

3

N
P,(0) = P;(a) = B,(0) = B(a) = T[% - E:
n=1,35...

And from the first two of equations (4), one obtains the following running
tensions between the rigid stiffeners and the plate edges at x = O and

X = al
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N
N (0,y) = N (a,y) =22 )  B(n) sin B) (0<y<b)
n=1,3...

}—l

(D116)

" With 5&, éﬁ, B, as known, equations (B6O) will give the values of

""  and equations (B61), (B34), and

N 1 " s 11
the odd subscripted Sp» S Sps S

(B35) values of jmn’ 8on’ and S with m and n both odd. The expressions

obtained are:

s' = s; = T[c(n) - vB(n)] (p117)
sy = sp" = TG(m) (p118)
Spn = thl‘ J(m,n) (p119)
€&mn = :{ﬁ G(m,n) (p120)
1
con = %E ¢(m,n) (p121)
1
where
J(m,n) = el*nB = [n®8%B(n) - mC(n) - mn BZG(m)/C]
w[m” + n"B"] (D119a)
G(m,n) = —[—ﬁ—e? [mnaBac(n) + n3BLLG(m)/C + m(m2 + 2n2B2) B(n)]
nwlm +n B
(D120a)
hmBC(g) bmen B2G(m)
C( > ) = +
n xln® + n2B2]2 «n® + n°B°1° ¢
km B(n) [me(m? + 2n2B2) - 1] D121
* 22 (@ + 250)2 (D121a)
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Equations (B16) and (B19) through (B25) then give the following

stiffener tensions and plate stresses:

Py) =By =Ty [cm) - vB(n)] sin () (0 <y <b)
n=1,3... (D122)
P(x) = B (x) = T Z G(m) sin (5F) (0 <x<a) (D123)
m=1,53...
M N
(O <x < a)
Th mex . n
KI Z Z G(m,n) sin ( ) sin (—gx) (0 <y<b)
m=1,3... n=1,3..
(D124)
M
‘I‘h .
(Nx = (N )y-b l Z [G(m)/C] sin (n%) (0 <x <a)
m=1,3... (D125)
M N (
_Ih o (MAXy ... Oy 0 <x<a)
12 zf‘(m, S1n(a)S1n(b)
m=1,3... n=1,3.. (0 <y<hn)
(D126)
N
= = 2B in B
(N&)x=0 = (Ny)x=a ~‘A1 E: C(n) sin o (0 <y <b)
n=1,3%... (D127)
M N
(0 < x< a)
= - _T.E msx ny —_ —_
m=1l,3... n=1,3..
(D128)
Numerical results for xl and kg # O. - The equations described

above were applied to the special case of a square plate (B = 1), with

all stiffener areas equal (Al = A2 = A3 = Ah = A), and Poisson’s ratio

155



vV equals to 0.3. The assumption that B = 1 and that all stiffener areas
arelequal implies that kl ='K2 (see egs. (C81)), and the common symbol
A will therefore be used for both Kl and kg.. The Gauss-Seidel iteration
procedure was used in solving equations (D57(1)).

The results obtained from the stiffener tensions and plate stresses
are shown in dimensionless form in figure 14 for A = 1.0. The values

of M and N employed in the calculations are indicated on the figure. In

general, stresses were computed at x/a and y/a interval of 0.1.

Limiting case of large stiffener areas. - For the case in which all

the stiffener cross-sectional areas are very large compared to the plate
cross-sectional area, equations (D53), (D71), and (D72) may be employed
as approximations which become more and more accurate as the ratio of
stiffener to plate cross-sectional areas approach infinity.

Equation (D72) can be reduced to the following equation by substituting
equations (D7"), (D20"), (DT77), and (C24') into equation (DT72) with z&

defined by equation (D58b):

G(m) = & (072")
where
"A
&(m) = g?h 2

Substituting from equations (3), (ci12'), {(p7"), (D18"), (DT7), and (D64'D)

into equation (D7l), one obtains

M
E: m[m22+ (2;v; gng] G(m)
C(n) % m=1,3... [m~ + n"B°] i (D7L")
T ¢ ol M 2 22 !
nc @ Z [° + (2+v) n°B°]
2 + 0282 P
m=1,3... -
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where c'A

= n l
Cln) = =

and the G(m) are known from equations (D72').
With the Eﬂ and é& known, equation (D53) can be expressed in
the following form if use is made of equations (D77), (D7'), (ci2'),

(c13'), and (B66):

M M
Y omlCremn B lgn g Y llE o]
(2 + 0252 P n [m2 + n2p2 ]2
B(n) = m=1,3... _ m=1,3...
= M M
) [n + (2+v)n°B?] y [n® + (2tv) n°B?]
[m2 + n2B2]2 [m2 + n2B2]2
m=1,3... m=1,3...
(p53(2))
where
g BIA
B(n) = —

With the B] thus known, from equations {D13) and (D1k) cue obtains the
following tensions at the ends of x-wise stiffeners where they join the

rigid vertical stiffeners:

N
P,(0) = P(a) = B,(0) = By(a) = TLE - (wh/4) »  B(n)/n]
n=1,3%... (D129)

And from the first two of equations (4), one obtains the following running
tensions between the rigid stiffeners and the plate edges at x = 0 and
X = a:

N
N (0,y) = N (a,y) =32 ) B(n) sin (mwy/o) (0 <y <b)

n=l,3... (DlBO)
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With 61'1’ gl;l, Blj1 known, equations (B60) will give the odd-subscripted

s s;, si", s;", and equation (B61), (B34), and (B35) the odd-subscripted

jmn’ 8’ Cm 25 follows:

s, = Sy = Tlc(n) - vB(n)] (D131)
sé" = 5" = TG (m) (p132)
S = %? 3 (m,n) (p133)
(mft0)
(nf0)
g = %ﬁ G(m,n) (D13%)
Con = %? C(m,n) (D135)
where
J(m,n) = ———§£22—5—5 [n2B2§(n) - m?E(m) - mn Bea(m)/C] (D133a)
7 [m“+n“B<]
G(m,n) = ———%——5—5—5 [mn?B25(n) + n7B"G(m)/C + m(m® + 2n282)B(n)]
7 [m“+n“B<]
(D13ka)
Tm,n) = hmja(n) N bmn Bga(m)

n[m2 + neB2]2 7 [m2 + n2B2]C

2B2
2

N 4mB(n) [me(m2 + 2n

2_2 2

. L 1] (p135a)
n“B n (m~ + n"B

)2

Finally, equations (B16), and (B19) through (B25) will give the following

stiffener tensions and plate stresses:
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P,(y) =P(y) =T Z [C(n) - vB(n)] sin (awy/b) (0 <y<b)

n—l, eew - (D156)
M
P3(x) = Pu(x) =T Z G(m) sin (mnx/a) (0 <x<a)
mEdy e (p137)
M N
(0 <x<a)
N, %li Z Z G(m,n) sin (mnx/a) sin (nny/v) (0<y<b)
m=1,3... n=1,3..
(p138)
.
faz A ot _ _':_[‘_1} I~/ VN1~ o f Y Y '~ < %< g
KNx)y:O N ) A L lG(m)/C] sin (mnx/a) (06 <x<a)

(D139)

(0 <x<a)

M
Ny - In Z Z C(m,n) sin (mrnx/a) sin (nmy/b) (0 <y <hb)

v oA
m=1,3... n=1,3...
(D140)
N
Th = . B
= = = < <
00 = () = 5 Y T() sin (ary/o) (0 <y <b)
p=l, 3. (D141)
. N (0<x<a)
ny = - = Z Z J(m,n) cos (mnx/a) (nxy/v) (O<y<b)
l —_— -—
m=1,3... n=1,>3...
(D1k2)
Numerical results for the case of large stiffener areas. - The numerical
results for A, = N —~0, obtained from the above equations, are shown in

1 2
figure 15 for square plate (B = 1) with all stiffeners identical and

"Poisson's ratio v equals to 0.3.
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APPENDIX E

ANALYSTS FOR ALL FOUR STIFFENERS
WITH PRESCRIBED DISPLACEMENT CONDITIONS

In the present appendix the case of figure Lc is considered. 1In
this case all the edges of the plate are assumed to be forced into the
prescribed shapes by means of attached rigid stiffeners (shown shaded
in fig. b4c), which shapes are defined by known values of K> K;, KA",
and K&" in equations (8) through (11). Correspondingly, the Fourier
coefficients Bﬁ, B;, B&" and B;", which describe the running tensions
between the stiffeners and the plate edges, are now unknowns. In
addition the loading resultants Tl’ Ml’ T2, Mé, T5’ MB, Tu and MM
constitute eight new knowns, supplanting Pl(O), Pl(b), P2(O), ,PB(O),

PB(a), PM(O),'Ph(a), which are now unknowns. E,®)

Formulation of Boundary Condition of Prescribed Curvature

Equations (D4t) apply alsc in the present case. They express the
requirement that at x=0 and x=a the curvatures of the stiffeners and
the curvatures of the adjacent plate edges to which they are joined
must be equal. These equations are rewritten in slightly rearranged

form as follows:
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K! = -V - ——) c Z 1 cu)(n") - ¢ (% ) ot

m=0

5
+B"(n") c Z( )" £ L5 - ch)(n" - ¢, (% ) 1—"
m=0
M 2 2
£y 7 B - ) - () ]
m=0

mne 1'11'[2 m
71 (o - (eI

+c e, () -C
+ () (Bhe, [(cy c4><n“> -c, (%) thm-< 1)" gn1]

on
b

A

- 2
Z El_ m |n ( l)nB""][C (nJT _ Cj(%)e}

a

O"II\J

m=1 (El)

" n y (AT e m 1 [ n 2 c E:r_t)gl f_m
K = V- By oy ) 1T Elese ) ) - G 1)
m=0

2-8

ns 2 - 1 nyx 2 mmn 2
+B;"1(—b-) Cl Z in—n [(03-C4)(—b) - 02(_;) I
m=0

M 2 2
1 m
+ E() (-1)" - CICOTCERICONERNC I

2 8
+c e, (B) o5 () ](n“) [e,-(-1)"% "JG

2
+ 20 (F)e, [(esmcy ) () -6, (——) g (-1)" 1]

A M (gt - (-1)"B""1lC (H)2 -c (M)gl
a 2 mn m 1* b 3" a

1
[od \V]
o8
™M=

N

1

}—-‘
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Two more equations, analogous to these, will now be obtained from
the conditions of prescribed curvature along the edges y = O and y = b.
Differentiating the last of strain-displacement relations, equations (Bl),

with respect to x, one obtains

87xy Bex

Eliminating the strains in terms of the stresses by means of equations
(2), and then the stresses in terms of the stress function through

equations (B4), this becomes

2 3 3 de

v o°F O°F X

— =(c, - ¢) -C - (E2)
a0 M By Lty W

The curvatures of Bgv/ax2 of the edges y = 0 and y = b are therefore

.2 3 3 de
e I RN s IR N e SR )
ox~ y=0 ox~dy y=0 oy~ y=0 Y y=0
; (E3)
2 3. 3 e
& =) oD - Y
ox~ y=b ox“dy y=b dy~ y=b y=b

The terms on the right-hand side of the first of equations (E3) can be
expressed in series form with the aid of equations (21), (B42), and
(B43). The result is

52 M N N
v mx N P N Ellr_}s
S S E Y i, T

X y= m=1 n=0 n=0

Comparing this equation with equation (10), one obtains the following
M eguations representing the boundary condition of prescribed curvature

along the edge y = O:

162

o



e

N N
K""=(C—C)Ej—t-z;j -C Zh -v't (m=1,2 ..., M
m 4y ~3/ g mn 1 /7. “mn m » 2 ’
n=0 n=0

(E4)

Similarly, the condition of prescribed curvature along the edge y=b is

N N
n _ - mx _1y - _1yRt o ygnn
Kn" = (C,-C5) M Z( nts - Z( ' n -
n=0 n=0
m=1, 2, ..., M) (B5)

The unknowns jmn and hmn in these equations can be expressed in
. 1 . .
terms of basic unknowns cﬂ, cg,gé,g;,Bﬂ,etCe To accomplish this, we
first observe that equations (B58) and (B61) can both be represented
by the following single equation, in which any undefined gquantities are

to be considered zero:

b~ - R+ 2 i, 22 g0y
(m#0)
2-% 3 3
+ E;; 22 (&) 18" (1) e, + 2(2) (8- (-1)"8) Ic, )
(E6)

Furthermore, from equation (B47), (Bik), (B50), and (B51), one obtains

n = ple) - g (E7)
3 5 3
Bobon = () Tp + 555 () [ep-(-D" il
(m # 0)
(n #£ 0)

L 2
- 2lg)- (-1l 1, () + (c,-205) (FE) (““
2
+ By (Mg (1) B IEE) o, + (B ) (0,-26,) ]

2 2 2 11 "n
- £ () By-(-1)"B)"Ic, (E8)
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and these two equations can be represented by the following single

equation in which, once again, undefined quantities are to be regarded

as zero:
3 3
nx 2 mx ,nx r _ (_qy\l
Enlten = % ITm*3 2 (—5) [cn (-1) 2
(m # 0)

2 L 2
- 2 [g(-1)"gn L0, (D) + (cym205)(F) () ]
g(M)(E)[B'-<-1)“ﬁa"J[(E‘E)gc + (i‘%g(c - 2¢,)]
a’M b n n a’ 2 b 4 3

2 m:renrte[‘.. n )
- £ () &) Bt - (1) Bl (E9)

Substituting from equations (E6) and (E9) into equations (Ek) and £e5),
one obtains the following equations, which are analogous of equations {E1):

N

1

TR LR VI L
K Vo Z E_ Tmn b[(C Cy

=0 mn

2
mat
&) -, ()

£y 2 CEDED e, ) () RN NI,
n=0 ma

o Dm0 )%yt m® o my® g )
5 () lgyr (17 gl (5) - ¢5(R) 16y

N
2
- 2m Z () [8- (1B 10, () - 50 ) Ie,

n=1 ™
2 2-5 2 2
y o IOT L no _ mity an
)Y B e Hesa) - el 15
n=0

2
22r(e,0,) () - 6 (F >1c
n=0 (E10)
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N
2
ey ) n 1l nrx _ gt _ nyx
K= -V +Z(-1) %Tmn p (€50 - ¢ ()
' n=0

n_1 mn2 _ m
Z(l) CE) B (cgc) () - ¢, (F B ) (1)t I,

- n=0
“Ono nn\2 ' n_, mn,® nﬂe]
t 5 () g (-0 le, () -, () Iey)
N
-2m Z in(n—g)[Br'l-(-l)mB;][Cg(m—: - ¢, (% )]C
n=
m:t2 - n 1 2-Sno mﬂe
B Y (0 g 1)) - 6D I,
n=0 i
mx 2 - 1 2“ano mx 2
B () Z TR [(CB_CM)(:) - ( )]C
n=0 ™0 (E10)

Formulation of Boundary Conditions of Equilibrium

Equilibrium considerations for the stiffeners at x=0 and x=a lead

to the following relations (see appendix D):

N
T M
b 5,1 _ 1
P5<O)_—Znan+ 2 b
n=1
N
T M
- - b an,2_ 2
P5(a)— ZnﬂB T3 b
n=1 (E11)
N
T M
_ _ nb . 1 1
Ph(o)_z (-1) nan+ 2+ b
n=1
N
T M
nb " 2, 2
Pu(a)-z<'l) mnt 2B
n=1
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Additional equations of the same type result from considering the
equilibrium of the other two stiffeners. The equilibrium equations for

the stiffener at y = 0 are

a
Pl(o) + P2(O) + f Ny(x,O) dx =.T5
0

a
T a
a*P(0)+ [ xN(x,0) dx = ——+ M
2 h's 2 3
0
By substituting
M
_ T max
Ny(x,o) = Z B'" sin (—-——a )
m=1
and solving these equations, one obtains
M
T M
- - & piny 22
Pl(o) - Z wr Sm T2 a
m=1
(E12)
M
T M
= 1Y A& qin _é + _2
PE(O)_Z(J') w Pt D a
=1

Thus, in effect, the unknown Pl(O) and Pg(O) have been expressed in terms

of the known T5 and MB. Similarly, from the equilibrium equations for
the stiffener at y=b, one obtains
=, Ty M
- - =« e —_— et
Pl(b) B Z mxt Bm T2 a
m=1
(E13)
- m a Th Mh
— - z R4 — i
Pz(b)—Z(l) m:er * 2+ a
m=1
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Separating. B' BL, B'", and B"" Terms in R' R" R.L"’ R:;:

Substituting from equations (E1l) to (E1l3) and (B69) into equation

(B68), and isolating the B, B;, Bl;l" and BI'I'I" terms, one obtains

M
' it - nn IR o HE N1
s+ Z n [B" - l)an 1+ 7B, - 7'B!

o]
=872
]

M
no_ oan _ _1\1t [ Y o _ o oonm 1HRn
R! = 8! Z( 1™ (B - 1)“13m 1- 78!+ 78"
m=1

(E14)
R "=8!"+ ZHM[BI'I-.(-l)mBH] + I'B " - ['BM"

n=1

R"" = g"" _Z(_l)n H [B' - (—l)m B"] - TMB!" 4 pungnn
m m mn n n m m m m

where S/, S;;, Sr;l”, Sr'r’l" are known loading terms defined as follows:

M
T oM T oM
f oA nn ., 1 mnx 3.3 (kT
Sp= @t AR T - ZE o It e T Ly - ]
m=lmn
(E15)
M
2 T oM
" o_ _nMt " m l mnw _5_ _2_... n
Sp = - + AE, T I Z(l) = Tt ot @ Y
mn
m=1
T oM
L L
[b+ ab] (E16)
T. 2M T oM
e " [ 1 mnﬂ ._._l—_l__ m._2_._2
sm—Q‘mN'_A5E T ZE ab mn+aab(l)[a ab:l
(E17)
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N

2 T
SN QMY 4+ A B 2O LI (-l)n 1 mnx T o+ 2 + .E_Ml _(_l)m
m % L% a m E ab “mn a ab
mn
n=1
T M
2 2
. [E 4+ —=
2+ 22 (£18)

7, and 7; have been defined in equations (C10) and (D6).
Ti through T;" and nmn are also known quantities and are defined by

the following eguations:

N
1'\1__8'_+AE I_HEC +Z_A'_.E_(M)5C (El)
m  bmx 373 a 73 E b " a 2 AEBLY
mn
n=1
a 5
w8 1)L 2 mx
rﬁ ~ bmx * E: (-1) E b a) C2 <E2O)
mn
n=1
al 5
R mt ooy E: 12 mr
Fm bmzn AMEH a C3 Emn b ( a) 02 (E21)
n=1
and
2 2
2 mx 1l /mx a
Im =% = & _ ) G- 353 (B22)
m 7
System of Simultaneous Equations
Using 751) and 7£2) as defined in equations (C10) and (D6), equations

(E1) can be written in the following form:

M M
t 1 " 2 t t Rl 1 r oy n
Bn7r(1 ). Bn7r(1 ) =8 - Amn[Bm —(—l)an 1+ Z“mn[gm—("l)n gm]
m=1 m=1
M
* Zvr;m[ér'l - (-1)" 5;1] (n=1 2, ..., N)
=0 (E23)
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n n
m=1

M
+Z (-1)mvr;m[3;1-(-1)m 'l (a=1,2, ..., N)

| w=0 (E2k)
where 8& Ain’ and 8; are known quantities, given as follows:
M 2
B) = Kl - V! + Z TEan— Tm(IL:)[(C5‘Cu)(E%) - (%) ]
m=1 (E23a)
A'—gﬁ—l—ﬂ[c( 2-c( ) 1c, (E23Db)

"o K" no ZM m 1 mit [ (Blf_ 2 mm ]
e (-1) E__ Tmn(—g) (CB_CM) b) - CE(_E)
m=1 (E2ba)

Similarly, equations (E10) can be written in the following form:

B.HI-\(]-) Bnnl—\ - 5'" Z A" [B;l _ ( l) B;]

N N
+ Z r'r;n[cn-( 1) m n] + Z 1 [g ( l)n "]
n=1 n=0
(m=1, 2, ..., M) (E25)

N
Bl;l"réla) - BI'r,l"PIEIl) = B Z (-1)“/\1'];n (B! - (-1)’“13;1]

Z( 1)nuu [C __( l) C“] + Z( l)nvu [g _( l)n u
n=1 n=0
(m=1, 2, ..., M) (E26)
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where

N
2 2

r(l) 9 Z 5 L00)E) - o %c,  (E25a)
(2) o . n 1 e 2 s, 2,2 O

n=0 (E25b)

2
5'" = an an + T )[: C - )(m“ - C (E) ]
: ZE M IR R
2

A= 2 (e, (D) - cp(3) ey (E254)

mn
" 1 mmn 2 mrx 2
Mon = 5 L(C5C ) - ¢ NES ) 1= 3 (E25e)

mn
2 2 2-8
e - e T 0
mn
N 2
oy < e ) () g TR0 () 0y ()
n=1 (E26a)

Substituting from equations (El4) into equations (B62) to (B65)

yields the following eguations:

cia (n)-cpp, (n) = ZH (8" - (-1)"B!"1+ 7Bl - 7'BY
M - n
2 g' - (-1)" g
2 ,nxn m 'm
'S(—S) Z T (n=12,2, ..., N)
=1 mn
" (E27)
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-Elzlﬁl(n) * E;.aQ(n) = S; - Z('l)m Hmn[Bxhn - (-l)nBI'I'l"] - 7:1B1"1 + 71'1“3;-;_
m=1

2 an - méﬁ'('l)n &
+ b(—g) Z(-l) - (n=1,2, ..., N)

mn
(E28)

g0 (m)-gip, (m) = 5" + ZH [B:-(-1)"81] + T'B!" - Bl

n=1

N -,
e
=y

n=1

)"
é n (m=1, 2, ..., M)
mn

(E29)

'Smﬂ (m)+ )_‘_(m) Slln Z( l)n:H [B ( l)mBn] l—\nB,n + l—\yHBnn

n=1

¢ —( l)
2 ,mxn n
+ 2t Z(l) (m=1,2 ..., M)
(E30)
Equations (E23) through (E30) constitute 4N + LM equations that have

to be solved simultaneously for the 4N + 4Munknowns Er'l, E;’ g ég, B,

B", B'", and B"".
n m m

Procedure for Use of Equations

All the pertinent equations for this case have been presented above.
The procedure for using them will now be summarized: Equations (E23) to
(E30) are first solved simultaneously for the Eﬁ, E;, é&, g;, B‘ B;,
Bﬁ", and B;". With these known, equations (B60) then give thg sﬁ, s;,
s&l", Sx';l"’ and equations (B57) to (B59) and (B61) the Jpn- Finally, equations

(B16) and (B19) to (B25) give the stiffener and plate stresses.
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Special Case: BSquare Plate, Structure and ILoading Symmetrical

About Centerlines and Diagonals

If the plate is square (b=a) and if the structure, loading, and
thermal strains are symmetrical about the centerlines (x=a/2, y=b/2) and
about the diagonals, considerable simplification of the simultaneous
equations can be effected. Symmetry about centerlines and diagonals
implies that A = A, = A5 = 4, = A, Pl(O) = Pl(b) = P2(O) =_Pé(b) =
P,(0) = P;(a) = B,(0) = Py (a), a;(¥) = -a,(¥) = a5(x) = -q,(x), e (¥) =

ee(y), e5(x) eh(x), T =05 for mevenor neven, T, =T, = T3 =T, =T,

M:M =M =M)-I-=M’

1 2 3 o
K' = K; =0 1
> for n even
VI=V"'=0
n P4
KI;l" = KIIIIIII = o
for m en
V'" = -VH" o O r r ev
m m J
K' = -K"
n
—_— 61"1 = —6; for n odd
V' = -y"
n n
K'" = _KHII
m m
—_— 81;1" = -6;1" for m odd
1 _yhn
Vm = Vm

By the property of symmetry about the centerlines, it follows that

=cr =g =g =B =B =B"=B"=0  (mn even)

(E31)
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n
Br;l" - Blrlvln L
- - (m,n odd) (E32)
c! = ¢
n n
& = &y

In order to insure that the physical symmetry about the diagonals is mani-
fested in the mathematical solution, M and N will be restricted to be

equal. It can then be expected that

Bv" = BI
m m
(E33)

' -él
m m

g
Consequently, the original simultaneous equations system, equations (E23)

to (E30), can be reduced to the following:

M M
t (l) (2) t — ] 1 -l -v v—' 1
Bn[(7n -7n )+2Ann:I - 6n *e }: I‘Lpncp * 2cn Z_. Vpn
p=1,3... r=1,53...
M
-2 Z AI'mBL') (1 - 6np) mn=1, 3 ..., M)
p=l, 5. .. (EBLI-)

M
2
Gy (1 ¢ EE g) = sy e aip v )

p=1,3%...
M -
2 c'(r-8_ )
L nx p pn
- B(—b) Z E
p=13... po.
(n=1, 3, ..., M) (E35)
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The procedure for the'special case can be summarized as follows:
Solve equations (E34) and (E35) simultaneously for the EA and B!
(n=1, 3, ..., N). (This can be done by the Gauss-Seidel iterative
method, which will be described in detail in a later section dealing
with an illustrative thermal-stress problem.) With these known and

using the relations c; = el g =8 = e, By =B, B" = B" = B!

" s (A1) S""

(m,n 0dd), equations (B60) will furnish the values of s> Sy, 81"y st

(m,n odd), and (B61) the values of the 3in (my,n odd). Equation (B16)
and (B19) through (B25), in which only the odd values of n and m are

included, will then give the stiffener and plate stresses.

Limiting Case of Large Stiffener Areas

S8till referring to the special case of symmetry with respect to
plate centerlines and diagonals, the limiting condition in which the
stiffener cross-sectional areas A are large compared with the plate
cross-sectional area will now be given brief consideration. This
limiting condition can be analyzed by means of a first-order perturbation
applied to equations (E34) and (E35), as follows: Assume Eﬁ = Eﬁo) + Kagl),

B, = Bép) + ABél), substitute these expansions into equations (E34) and

(E35), and equate separately terms of the zeroth and first degree in A.

=(0)

This will lead to four systems of simultaneous equations, two for <,
and Béo) and two more for Eél) and Bgl). The latter two equations will
involve the Elgo) and BISO). Therefore the Eéo) and Br(10) equations must

be solved first, after which the Eﬁl) and Bél) equations can be solved.

This technique will be described in more detail in connection with

a particular application in the next section.
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Illustrative Thermal-Stress Problem

In order to illustrate the details involved in the application of
the foregoing analytical results, a particular example will be conéidered
which has the foliowing characteristics:

a) All four edges kept straight; therefore the Kﬁ etc. in equations
(8) through (11) are all zero.

b) Plate isotropic; therefore the elastic constants are given by
equations (3).

c) Plate and stiffeners have the same Young's modulus E.

a) Al = A2 = = Ah = A.

A3
e) Plate with the same dimension in x and y directions; therefore
B in equation (C79) equals to 1 (a = b).
f) No force loading.
g) Stiffener temperature constant at the value To'
h) Plate temperature T(x,y) symmetrical about both centerlines

(x = a/2, y = b/2) and varying sinusoidally in accordance with the

following equation:

b
IA

a)

T(x,y) = T, + @ sin (B%E) sin (9§X) (
B 0

IA
«
A

b)

where P and Q are odd integers.

i) P=qQ

j) Plate and stiffeners have the same coefficient of expansion Q.
It will be recognized that in this problem, as described above, there
exists symmetry about the plate centerlines and diagonals. When
numerical calculations are considered, the problem will be further
specialized to the case of a "pillow-shaped" temperature distribution,

namely P = Q = 1.
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Reduction of general equations to special case. - From the given
temperature distribution, one obtains the following equations for the
known coefficients in terms of temperature distribution and the coefficient

of expansion o (see appendix C):

T= TN =TI = T =0 (E36)
2
Ton = ~OnpPug ae(g) [P° + Q°F°] (E37)
v = —VH = 0 Eg an (E38)
Similarly,
vt= -yt -a0 L (E39)

Due to the absence of prescribed forces, the following quantities are

all zero:

T,, M

2, T5, Mj, TJ.‘., Mll- (fig. h-c)

T ., M

r Ty e’

Qﬁ, Qﬂ, Qﬁ”, Q&" (see egs. (6))

(It should be noted that Pl(O), Pl(b), Pé(o), Pz(b), PB(O), Pj(a),
t 1" t 1t e . .
, Ph(O), Ph(a), B!, B, B'", B'" do not necessarily vanish.)

Because in this example the structure and loading are symmetrical
about both centerlines and both diagonals, the simplified system of
equations, namely equations (E34) and (E35), are the governing equations.
From equations (E36) and (E37), (C81), and (E15):

8' =28 (Wﬂl——ﬂﬁ——— (E15")

n nQ - (P2 + Q?Be)
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Substituting from equations (3) and (C81) into equation (E22), one

obtains

' 2
it _ 2mB m 1 ]

mn T (m2 - n2B2)2 m2

(E22')

Equation (E23a) can be reduced in the following expression by substituting

from equations (3), (¢81), (E37) and (E38):

- e () (e &P,

(E23'a)
[ + 252 NQ

Substituting from equations (C81) and (3) into eguation (E23b), one
obtains

2.2 2
A = 2mn[n“B° - vm~ ] B (E23'b)

mn b[m2 - n2B2]2 Fh

Substituting from equation (C81) into the first and fifth of equation

(B67), one obtains

>\'l - m2
a.(n) = AE {1 + — )
1 2 Ez: [m2 N n2B2]2
m=1
M
A m 2
— 1 )y m
By(n) = AE - ji: (2 + o2l P
m=l}§.ﬂ“7ﬂ n np
Therefore, M
3 o
a,(n) - By(n) = AE {1+ A 555  (E%0)
[m® + n"B7]
m=1,3...

Equation (EBM) can be reduced to the following expression by substituting

from equations (C81), (€12'), (c13'), (D77), (E23'a) and (E23'b):
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M

{ _i___l;lni--enaBz E: [P2 + (2+v) neBg]} B(n)

' M
P [PP+(2+v)q7B7 ] 2 plp>+ (2+v)n°8° ] ¢(p)
=803 2 355 - 1) - 2nB > 200
[PT+qQ7B7] [p° + n"B7]
p=1,5...
5 2 - [n [n°B-vp? IB(p)
+2n“B=C(n) ———P— -2nB° Z pLn 2 2P2 5 P (1-5_)
~ [pP+n®B® 12 [(p"+n"B"]
p=1,3... p=1,3...
(n=1, 3 ..., M) (E341)
where
By . °n
B(n) = Gom ¢n) = Som

Substituting from equations (C81), (c22'), {c23'), (E15'), (E22'), and

(ELO) into equation (E55), one obtains

)\.lB5
fn[1+xlz 5]+ ———— } ¢(n)
+ n B n(l+ B
=1,3. . p &2 ( )
M
19,8
=6nQ —El 2PQ<——— + [vn + xln5 B2 E: 5 L 55 5 1B(n)
Po+Q B2 + n“B7)°
[F+q 5] p=1,5...(p" * 07B7)
M M
o 1 5 5 p(1-5, )¢(p)
N P55 - ZIB(p) - A n°B
1 (02+n28°)2 P 1 [ 2, 2P
p=1,3... p=1,3... 'P
(n=1, 3 ..., M (E35")
Procedure for numerical solution. - In the solution of this system

of equations (E34') and (E35') the Gauss-Seidel iterative procedure of
reference 6 was employed. Briefly this involved an initial assumption
that all the B(p)'s and C(p)'s in equations (E35') were equal to zero

except C(1). This allowed an approximate value of C(1l) to be obtained.
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Substituting this approximate value of C(1l) into equations (E34') and
setting B(3), B(5), etc. and all other C(p)'s equal to zero gave an
approximate value of B(1l). Substituting these approximate values of
B(l) and C(1) into equation (E35') and setting all other C(p)'s except
C(3) and all other B(p)'s equal to zero gave an approximate value of
C(3). Substituting these approximate values of C(1), C(3), and B(1)
into equations (E34') and setting all other C(p)'s and all other B(p)'s
except B(3) equal to zero gave an approximate value of B(3). Continuing
in such a fashion it was possible to obtain one set of approximate
values for the B(p)'s and C(p)'s. This set is called the first iteration
solution to the system of equations (E34') and (E35'). Additional
iterations were obtained in the same manner as the first iteration
except that initial values of unknowns are not assumed to be zero are
taken from the results of the previous iteration. The procedure was
stopped when no B(p) or C(p) changed more than 0.000001 from one
iteration to the next. Alternatively, one can reverse the order in
which equations (E3L') and (E35'), solving for a B(p) in equations
(E34') first, then for the corresponding C(p) in equations (E35'). The
final results are the same as in the above procedure.

With the Bﬁ known, and T

=0, M, = 0, from the first two of

1

equations (Ell), one obtains the end tensions in x-direction of stiffener

1
at y=0:

N
PB(O) = P5(a)' = - GPAE A Z JEIH B(n) (E11')
n=1,3...
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Dué to the properties of double symmetry and symmetry about the

diagonals, with B' and c¢' as known, then B" = B'" = B"" = B! and
n n p p Y 1Y

c; = gé = g; = cé. With these known, equations. (B60) will furnish the

values of sﬂ, SS’ si" s""; (B61) the values of 3’ (B34) the values
of g ; and (B35) the values of o (only the odd-subscripted quantities
are needed). Equations (B16) and (B19) to (B25), with the only odd values

of n and m included, will then give the following stiffener and plate

stresses:
N
P (y) = By(y) = oam ) [c(n)-vB(n)] sin (BX) (0 <y <a)
n=1,3... (Ehl)
Py(x) = B,(x) = oamy Z [c(p)-vB(p)] sin (X (0 <x<a)
p=1,5... : (Bb2)
_— (0 < x < a)
= QOFEh E: E: G(m,n) sin (——— n (B2¥ S ) (0<y<a)
. n=1,3..
(E43)
(Nx)y:o = (Nx)y_a = a®Eh z C(p) sin (——) (0 < x < a)
p=1,3.. (ELL)
M N
(0 <x<a)
= 0o9Eh Z Z ¢(m,n) sin (m—i:l—)f)sin(%—x) (0 <y <b)
m=1,3... n=1,3%
(ELS)
N
(Ny)X=O = (Ny)x=a = ©Fh Z Cc(n) sin (Egz) (0 <y <a)
n=1,3... (EL6)
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N . u (0 <x<a)
N, = -0SEh Z Z J(m,n) cos (_a_x) cos (‘?) (0<y<a)

m=1,3... n=1,3... (&47)
EWT

where G(m,n), C(m,n), and J(m,n) are known quantities, and given by

the following equations:

G(mn) = Z5En
2_2 2 2 2
4n“B 2 bm[m~ + 2n"B" IB(n)
= [(mC(n) + nB“C(m)] +
A2 + nPB2 ]2 <[ + n2B2]2
N hntB(m) ( n2B2[n2B2 + 2m2] -1} - Q,EB2 5 &
2 [m2+n252 12 (P2 + pe) mPnQ
(E48)
Cmn
¢(m,n) = 5omn
_ hmB(n) m2(m2+2n232) - 11+ lLnB2,B(m) (fBg + 2m2)
¢ (e + mEPo(a)] - T BnpPng
x{m™+n"B7] (P7+Q7B7)
. (Ek9)
J
o) = S22
) 2.3
_ __PgB 5 5 - 4m“nBC(n) __bmn"B- c(m)
(PPegPp?) ™PUOR T 2 222 T 2 222
l+m3B hnBBB
+ B(m) + * B(n) (E50)
[uf + n2E2 2 [P+ n22 12
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With B! =.BH = Bﬁ" = BH" (n odd) known, from the first of equations

(4), one obtains the following running tension between stiffeners and

plate: N n
N_(0,y) = 0SEh Z B(n) sin (—;‘-’i) (E51)
n=1,3...
Numerical results for A = 1. - The numerical procedure and equations

described above were applied to square plate subjected to a "pillow-

shaped" temperature distribution (P = Q = 1) and having stiffener and

1.0. The results obtained

plate cross sections corresponding to A

for the stiffener tensions and plate stresses are shown in dimensionless

form in figure 16 for v = 0.3.

Limiting case of large stiffener areas. ~ Still referring to the

special case of symmetry with respect to plate centerlines and diagonals,
the first-order perturbation solution corresponding to stiffener
cross-sectional area large in comparison with plate cross-sectional

area (A—0) will now be given. This solution is obtained by assuming

that o(n) = C(o)(n) . m(l)(n)
(ES2)
B(n) = B(O)(n) + kB(l)(n)
where
°n Ba
¢(n) = sommw B(n) = 55%n

Substituting from equations (E52) into equation (E34'), the following
two equations are obtained from those terms which do not involve A and

those which do involve A, respectively:
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o(B°-v)B° 2.2 - [p%+(2+v)n°B>1, _(0)
(——(—)—é - 2n°B Z P } B/ (n)

[1 + B2] s [p2 - n2B2]2
=1,35...

N .
—5 B [[P2+(g+v)29§]32] 1) o Z P[P2+é2+v)22222] 20) (1)
nQ [(PT+Q™B7 ] p=1.5... [p~ + n“B°]

M M
vor2s? ) Z [n°B%-vp®] 2 Z p[ns%-vp?18(%) (p) (1-5
2 220 2, 222 np
p=1,3... P ¥ B"] =1,3 [p” + n757]

(ES3)

M
2 12 2 22
2 -vng - on2pP E [p : (2+;)21; 1y My
(1+87] p=1.3... LP°+nB7]

M M
2 2_2. (0) 22 2
- —onp? Z plp +(g+v)n2B2]g (p) + op2p2 C(l)(n) Z [n2B ;29 2]
p=1,3... [p” + n"B"7] p=1,5.,. P o B7]
M
2.2 2. (1)
-2nB? Z plnB = "4’2]232 () (1 - 5 ) (ESk)
p=1,3... [p” + n"B"] P

Similarly, substituting from equations (E52) into equation (E35'), one

obtains
() (n) = 8O (n) (=1, 3 ..., ) (B55)

and
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M
cMmy =8  EF-—5E——+ 5(%) (n) n%p? Z 2 12 272
nB

nq ¥ 2,022, R
" 3 0) - (0)
( 2+n232)2 P n [ 2, 2B2]2
p=1,3... ‘P p=1,3... ‘P2
M
(0) p° (1)
- ¢V (n) + vB "/ (n)
p=§5..!P2 + 12522

The C(l)(n) and B(l)(n) are needed only in the combination C(l)(n) - vB(l)(n)
for later stress calculations; from the last equation, one obtains the

following expression for the combination:

M
(1) (1) m P (0) 2.2 1
C -VvB = B —_—— + B B
(n)-v (n) ng & PP ] (n) n _Z 7, A
p=1,5...
M M
+ Z [ A l}B(O)(P) -nB® Z _pe' D)
(P2+n2B2)2 p- n [p2+n2B2]2
p=1,3... =1,3...
M 2

'C(O)(n) Z E (I’l =1, 3 ... M)

o 2 + 252 P
(E56)
Equations (E53) through (E56) are to be solved for B(O)(n), C(O)(n),
B(l)(n), and C(l)(n). Equations (E53) and (E55) must be solved simultaneously
for the B(O)(n) and C(O)(n). The procedure for solving simultaneously

for B(O)(n) and C(O)(n) is the same as described previously for the case

of any A. With B(O)(n) and C(O)(n) known, equations (E56) will furnish
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the values of C(l) (n)-VB(l) (n) directly. By substituting from equations
(E52) into equations (B16) and (B19) to (B25), and neglecting terms in
A for the plate stresses, one obtains the following equations for

calculating stresses:

N
SAECM Z [C(l)(n)-vB(l)(n)] sin (%I) (0 <y<a)

P.(y) = Pj(y) = .
n=1,3... (E57)
M
P,(x) = B, (x) = OABON S M p) - B (p)] sin (EE) (0 <x<a)
p=1,3... (E58)
al . _— ny (0 <x < a)
Nxszhz Z By Sin (5) sin (55) (0 <y <b)
m=1,3... n=1,3...
(E59)
M
(Nx)y_0 = (Nx)y_a = 0©Eh j{: C(O)(p) sin (Egﬁ) (0 < x<a)
p=1,5... (E60)

i N c X nny (0<x<a)
Ny:OQEh Z . Sin (—a—) 51n(a) ©<y<a)
m=1,%3... n=1,3...

(E61)
N
(N)y0 (N) o = OBER z ¢ @) sin (=) (0<y<a)
n=1,3... (E6_2)
M N
- x (0 <x<a)
ny = -COEh Z Z 3y ©OS (l—n?) cos (ng) ©<y<a)

m=1,35... n=1,3... (E63)

where -gmn’ Emn’ and an are known quantities, and given by the

following equations:
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Cn
aOEh

A

hm[m2+2n2B2]B(o)(n)
2 2,22
n 5]

4n°B° (0) 24(0)
- j g [mc'™’(a) + nB°C*"’(m)] +

nim™ +

4B B(O)(m) n232[n2B2 + 2nf] Q"B
+ 5 % 255 " U3 558
am [m~ + n™B7] (FP" + Q7BY)
(E6Y4)

C
mrn

mn ~ oOEh

ol
|

1+ hntB(o)(m) (n2B2 + 2m2)
T

2 2)
[m2 + n2B2]2

hmB(O)(gl [m?jm2+2n B
2 (u2rn252)2

-1

2

™ 0) 2 .(0) P
g () (n) + m876{) ()] - P

& B
n[m? + n2B2]2 ) mP nQ

(E65)

+

Jmn _
a6Eh

ECJ. 1

PQB 5 8 hm2nBC(O)(n) _ mn°B> C(O)(m)
2 2_2-2
x[m~ + n"B7]

(PP+qPE?) TP MR 2, 2P

kB (0) hn B> (0)
B B 7/ (n) (E66)
rr[m2 + n2B2]2 x[m~ + n°B :

+

With the B} known, from the first of equations (4), one obtains in
a similar manner the following equation for the running tension between

the rigid stiffener and plate edge at x = O:

186



N
Nx(o’y) = OBEh Z ' B(O)(n) sin (nny/b) (0 <y <hb)

n=l,3. . -. (E67)

And from first two of equations (Ell), one obtains the end tensions

in x-wise direction of stiffener at y=0 as follows:

N
_ - - x_ 5(0) "
P5(O) = PB(a) = -QBAEN Z i, B (n) (E11")
n=1,3...
Numerical results for large stiffener areas. - The result for

A—>0 for a square plate (B=1) with all stiffeners identical subjected
to a "pillow-shaped" temperature distribution is shown in dimensionless
form in figure 17 for Poisson's ratio Vv equals to 0.3. In general,

stresses were computed at x/a and y/b interval of 0.1.
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Plate stresses and stiffener tensions for the case of
two opposite edges held straight, pillow-shaped tempera-
ture distribution, A,—~0, A—*0, and v = 0.3. (Dashed
curves, from fig. 5a of ref.” 1, are for the case of all
edge stiffeners perfectly flexible.) (M= 79, N = T9)
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Figure 14,

(b)

Plate stresses and stiffener tensions for the case

of two opposite edges held straight, stretching forces
applied normal to the straight edges, A = 1.0, and
v=0.3. (M=59 N=59)
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